Advertisement

Implications of Antibiotic Resistance in Potential Agents of Bioterrorism

  • Linda M. WeigelEmail author
  • Stephen A. Morse
Chapter

Abstract

Antimicrobial resistance is a major global health issue that restricts treatment options for many bacterial infections. Although biothreat agents such as Bacillus anthracis, Burkholderia mallei, B. pseudomallei, Francisella tularensis and Yersinia pestis are usually susceptible to the recommended antimicrobial agents, there are naturally-occurring resistance mechanisms reported in several of these species, and the potential for release of genetically-engineered strains cannot be ruled out.

Keywords

Bioterrorism Antimicrobial resistance Bacillus anthracis Francisella tularensis Yersinia pestis Brucella species Coxiella burnetii Burkholderia mallei Burkholderia pseudomallei 

References

  1. 1.
    Khan AS, Morse S, Lillibridge S. Public-health preparedness for biological terrorism in the USA. Lancet. 2000;356:1179–82.CrossRefPubMedGoogle Scholar
  2. 2.
    Strikas RA, Sinclair MF, Morse SA. Centers for Disease Control and Prevention’s bioterrorism preparedness program. Hoboken, NJ: Wiley-Liss; 2005.Google Scholar
  3. 3.
    Alibek K, Handleman S. Biohazard. New York: Random House; 1999.Google Scholar
  4. 4.
    Lindler LE, Choffnes E, Korch GW. Definition and overview of emerging threats. Totowa, NJ: Humana Press Inc; 2005.CrossRefGoogle Scholar
  5. 5.
    Ainscough M. Next generation bioweapons: genetic engineering and biowarfare. In: Davis J, Schneider B, editors. The gathering biological warfare storm. 2nd ed. Alabama: USAF Counterproliferation Center, Maxwell Air Force Base; 2002. p. 253–88.Google Scholar
  6. 6.
    Carus WS. Bioterrorism and biocrimes: the illicit use of biological agents since 1900. Amsterdam: Fredonia books; 2002.Google Scholar
  7. 7.
    Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM. Public health assessment of potential biological terrorism agents. Emerg Infect Dis. 2002;8:225–30.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Morse S. Pathogen security-help or hindrance? Front Bioeng Biotechnol. 2015;2.Google Scholar
  9. 9.
    Srinivasan A, Kraus CN, DeShazer D, et al. Glanders in a military research microbiologist. N Engl J Med. 2001;345:256–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Miller J, Engelberg S, Broad W. Germs: biological weapons and America’s secret war. New York: Simon & Schuster; 2001.Google Scholar
  11. 11.
    Kolavic SA, Kimura A, Simons SL, Slutsker L, Barth S, Haley CE. An outbreak of Shigella dysenteriae type 2 among laboratory workers due to intentional food contamination. JAMA. 1997;278:396–8.Google Scholar
  12. 12.
    Kaufman AF, Meltzer MI, Schmid GP. The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable. Emerg Infect Dis. 1997;3:83–94.CrossRefGoogle Scholar
  13. 13.
    Morse S, Kellogg RB, Perry S, et al. Detecting biothreat agents: the laboratory response network. ASM News. 2003;69:433–7.Google Scholar
  14. 14.
    Gilchrist MJR. A national laboratory network for bioterrorism: evolution from a prototype network of laboratories performing routine surveillance. Mil Med. 2000;165:28–31.PubMedGoogle Scholar
  15. 15.
    Weigel LM, Sue D, Michel PA, Kitchel B, Pillai SP. A rapid antimicrobial susceptibility test for Bacillus anthracis. Antimicrob Agents Chemother. 2010;54:2793–800.Google Scholar
  16. 16.
    Jernigan JA, Stephens DS, Ashford DA, et al. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis. 2001;7:933–44.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Torok TJ, Tauxe RV, Wise RP, et al. A large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bars. JAMA. 1997;278:389–95.CrossRefPubMedGoogle Scholar
  18. 18.
    Feldman KA, Enscore RE, Lathrop SL, et al. An outbreak of primary pneumonic tularemia on Martha’s Vineyard. N Engl J Med. 2001;345:1601–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Prevention CfDCa. Imported plague—New York City, 2002. Morb Mortal Wkly Rep. 2003;52:725–8.Google Scholar
  20. 20.
    CDC. Morbidity and mortality weekly report. 2006.Google Scholar
  21. 21.
    Treadwell TA, Koo D, Kuker K, Khan AS. Epidemiologic clues to bioterrorism. Public Health Rep. 2003;118:92–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tenover FC. Antimicrobial susceptibility testing of bacterial agents of bioterrorism: strategies and considerations. Washington, DC: ASM Press; 2005.Google Scholar
  23. 23.
    Athamna A, Athamna M, Abu-Rashed N, Medlej B, Bast DJ, Rubinstein E. Selection of Bacillus anthracis isolates resistant to antibiotics. J Antimicrob Chemother. 2004;54:424–8.CrossRefPubMedGoogle Scholar
  24. 24.
    TNR Council. Biotechnology research in an age of terrorism. Washington, DC: The National Academies Press; 2004.Google Scholar
  25. 25.
    Agerso Y, Jensen LB, Givskov M, Roberts MC. The identification of a tetracycline resistance genetet (M), on a Tn916-like transposon, in the Bacillus cereus group. FEMS Microbiol Lett. 2002;214:251–6.Google Scholar
  26. 26.
    Brook I, Elliott TB, Pryor 2nd HI, et al. In vitro resistance of Bacillus anthracis Sterne to doxycycline, macrolides and quinolones. Int J Antimicrob Agents. 2001;18:559–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Grohs P, Podglajen I, Gutmann L. Activities of different fluoroquinolones against Bacillus anthracis mutants selected in vitro and harboring topoisomerase mutations. Antimicrob Agents Chemother. 2004;48:3024–7.Google Scholar
  28. 28.
    Mohammed MJ, Marston CK, Popovic T, Weyant RS, Tenover FC. Antimicrobial susceptibility testing of Bacillus anthracis: comparison of results obtained by using the National Committee for Clinical Laboratory Standards broth microdilution reference and Etest agar gradient diffusion methods. J Clin Microbiol. 2002;40:1902–7.Google Scholar
  29. 29.
    Acar JF, Goldstein FW. Disk susceptibility test. In: Lorian V, editor. Antibiotics in laboratory medicine. 4th ed. Baltimore, MD: Williams & Wilkins; 1996. p. 1–51.Google Scholar
  30. 30.
    CLSI. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; approved guideline. Wayne, PA: Clinical and Laboratory Standards Institute; 2010.Google Scholar
  31. 31.
    Wilkinson GR. Pharmacokinetics: the dynamics of drugs absorption, distribution and elimination. In: Hardman JG, Limbird LL, editors. The pharmacological basis of therapeutics. New York: McGraw Hill Medical Publishing Division; 2001. p. 3–30.Google Scholar
  32. 32.
    Carryn S, Chanteux H, Seral C, Mingeot-Leclercq MP, Van Bambeke F, Tulkens PM. Intracellular pharmacodynamics of antibiotics. Infect Dis Clin North Am. 2003;17:615–34.CrossRefPubMedGoogle Scholar
  33. 33.
    Mandell GL, Coleman E. Uptake, transport, and delivery of antimicrobial agents by human polymorphonuclear neutrophils. Antimicrob Agents Chemother. 2001;45:1794–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Martin JR, Johnson P, Miller MF. Uptake, accumulation, and egress of erythromycin by tissue culture cells of human origin. Antimicrob Agents Chemother. 1985;27:314–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Miller MF, Martin JR, Johnson P, Ulrich JT, Rdzok EJ, Billing P. Erythromycin uptake and accumulation by human polymorphonuclear leukocytes and efficacy of erythromycin in killing ingested Legionella pneumophila. J Infect Dis. 1984;149:714–8.Google Scholar
  36. 36.
    Tyteca D, Van Der Smissen P, Van Bambeke F, et al. Azithromycin, a lysosomotropic antibiotic, impairs fluid-phase pinocytosis in cultured fibroblasts. Eur J Cell Biol. 2001;80:466–78.CrossRefPubMedGoogle Scholar
  37. 37.
    Anderson R, Van Rensburg CE, Joone G, Lukey PT. An in-vitro comparison of the intraphagocytic bioactivity of erythromycin and roxithromycin. J Antimicrob Chemother. 1987;20(Suppl B):57–68.CrossRefPubMedGoogle Scholar
  38. 38.
    Ohkuma S, Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978;75:3327–31.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974;23:2495–531.CrossRefPubMedGoogle Scholar
  40. 40.
    Easmon CS, Crane JP. Uptake of ciprofloxacin by macrophages. J Clin Pathol. 1985;38:442–4.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Carlier MB, Scorneaux B, Zenebergh A, Desnottes JF, Tulkens PM. Cellular uptake, localization and activity of fluoroquinolones in uninfected and infected macrophages. J Antimicrob Chemother. 1990;26(Suppl B):27–39.CrossRefPubMedGoogle Scholar
  42. 42.
    Garcia I, Pascual A, Ballesta S, Perea EJ. Uptake and intracellular activity of ofloxacin isomers in human phagocytic and non-phagocytic cells. Int J Antimicrob Agents. 2000;15:201–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Bonventre PF, Hayes R, Imhoff J. Autoradiographic evidence for the impermeability of mouse peritoneal macrophages to tritiated streptomycin. J Bacteriol. 1967;93:445–50.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Van der Auwera P, Matsumoto T, Husson M. Intraphagocytic penetration of antibiotics. J Antimicrob Chemother. 1988;22:185–92.CrossRefPubMedGoogle Scholar
  45. 45.
    Hand WL, King-Thompson NL, Steinberg TH. Interactions of antibiotics and phagocytes. J Antimicrob Chemother. 1983;12(Suppl C):1–11.CrossRefPubMedGoogle Scholar
  46. 46.
    Maurin M, Raoult D. Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrob Agents Chemother. 2001;45:2977–86.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Najar I, Oberti J, Teyssier J, Caravano R. Kinetics of the uptake of rifampicin and tetracycline into mouse macrophages. In vitro study of the early stages. Pathol Biol (Paris). 1984;32:85–9.Google Scholar
  48. 48.
    Berneis K, Boguth W. Distribution of sulfonamides and sulfonamide potentiators between red blood cells, proteins and aqueous phases of the blood of different species. Chemotherapy. 1976;22:390–409.CrossRefPubMedGoogle Scholar
  49. 49.
    Pallister CJ, Lewis RJ. Effects of antimicrobial drugs on human neutrophil-microbe interactions. Br J Biomed Sci. 2000;57:19–27.PubMedGoogle Scholar
  50. 50.
    Solera J, Martinez-Alfaro E, Espinosa A. Recognition and optimum treatment of brucellosis. Drugs. 1997;53:245–56.CrossRefPubMedGoogle Scholar
  51. 51.
    Perry RD, Fetherston JD. Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev. 1997;10:35–66.Google Scholar
  52. 52.
    Enderlin G, Morales L, Jacobs RF, Cross JT. Streptomycin and alternative agents for the treatment of tularemia: review of the literature. Clin Infect Dis. 1994;19:42–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Meyers BR. Tuberculous meningitis. Med Clin North Am. 1982;66:755–62.CrossRefPubMedGoogle Scholar
  54. 54.
    Morse SA, Budowle B. Microbial forensics: application to bioterrorism preparedness and response. Infect Dis Clin North Am. 2006;20:455–73. xi.CrossRefPubMedGoogle Scholar
  55. 55.
    Logan N, De Vos P. Bacillus. In: Parte A, editor. Bergey’s manual of systematic bacteriology. New York: Springer; 2009.Google Scholar
  56. 56.
    Mikesell P, Ivins BE, Ristroph JD, Dreier TM. Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect Immun. 1983;39:371–6.Google Scholar
  57. 57.
    Green BD, Battisti L, Koehler TM, Thorne CB, Ivins BE. Demonstration of a capsule plasmid in Bacillus anthracis. Infect Immun. 1985;49:291–7.Google Scholar
  58. 58.
    Price E, Seymour M, Sarovich D, et al. Molecular epidemiologic investigation of an anthrax outbreak among heroin users, Europe. Emerg Infect Dis. 2012;18:8.CrossRefGoogle Scholar
  59. 59.
    Doganay M, Aydin N. Antimicrobial susceptibility of Bacillus anthracis. Scand J Infect Dis. 1991;23:333–5.Google Scholar
  60. 60.
    Coker PR, Smith KL, Hugh-Jones ME. Antimicrobial susceptibilities of diverse Bacillus anthracis isolates. Antimicrob Agents Chemother. 2002;46:3843–5.Google Scholar
  61. 61.
    Cavallo JD, Ramisse F, Girardet M, Vaissaire J, Mock M, Hernandez E. Antibiotic susceptibilities of 96 isolates of Bacillus anthracis isolated in France between 1994 and 2000. Antimicrob Agents Chemother. 2002;46:2307–9.Google Scholar
  62. 62.
    Turnbull PC, Sirianni NM, LeBron CI, et al. MICs of selected antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides from a range of clinical and environmental sources as determined by the Etest. J Clin Microbiol. 2004;42:3626–34.Google Scholar
  63. 63.
    Bradaric N, Punda-Polic V. Cutaneous anthrax due to penicillin-resistant Bacillus anthracis transmitted by an insect bite. Lancet. 1992;340:306–7.Google Scholar
  64. 64.
    Lalitha MK, Thomas MK. Penicillin resistance in Bacillus anthracis. Lancet. 1997;349:1522.Google Scholar
  65. 65.
    McSwiggan DA, Hussain KK, Taylor IO. A fatal case of cutaneous anthrax. J Hyg (Lond). 1974;73:151–6.CrossRefGoogle Scholar
  66. 66.
    Chen Y, Tenover FC, Koehler TM. Beta-lactamase gene expression in a penicillin-resistant Bacillus anthracis strain. Antimicrob Agents Chemother. 2004;48:4873–7.Google Scholar
  67. 67.
    Materon IC, Queenan AM, Koehler TM, Bush K, Palzkill T. Biochemical characterization of beta-lactamases Bla1 and Bla2 from Bacillus anthracis. Antimicrob Agents Chemother. 2003;47:2040–2.Google Scholar
  68. 68.
    Ross C, Thomason K, Koehler T. An extracytoplasmic function sigma factor controls β-lactamase gene expression in Bacillus anthracis and other Bacillus cereus group species. J Bacteriol. 2009;191:6683–93.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kim HS, Choi EC, Kim BK. A macrolide-lincosamide-streptogramin B resistance determinant from Bacillus anthracis 590: cloning and expression of ermJ. J Gen Microbiol. 1993;139:601–7.Google Scholar
  70. 70.
    Barrow EW, Bourne PC, Barrow WW. Functional cloning of Bacillus anthracis dihydrofolate reductase and confirmation of natural resistance to trimethoprim. Antimicrob Agents Chemother. 2004;48:4643–9.Google Scholar
  71. 71.
    Navashin SM, Fomina IP, Buravtseva NP, Nikitin AV, Ivanitskaya LP. Combined action of rifampicin and peptidoglycan in experimental anthracic infection [abstract 115]. 18th international congress on chemotherapy. Stockholm: American Society of Microbiology Press; 1993.Google Scholar
  72. 72.
    Saile E, Koehler TM. Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl Environ Microbiol. 2006;72:3168–74.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    D'Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science. 2006;311:374–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Geer L, Marchler-Bauer A, Geer R, et al. The NCBI BioSystems Database. Nucleic Acids Res. 2010;38(Database issue):D492–6.CrossRefPubMedGoogle Scholar
  75. 75.
    Price LB, Vogler A, Pearson T, Busch JD, Schupp JM, Keim P. In vitro selection and characterization of Bacillus anthracis mutants with high-level resistance to ciprofloxacin. Antimicrob Agents Chemother. 2003;47:2362–5.Google Scholar
  76. 76.
    Choe CH, Bouhaouala SS, Brook I, Elliot TB, Knudson GB. In vitro development of resistance to ofloxacin and doxycycline in Bacillus anthracis Sterne. Antimicrob Agents Chemother. 2000;44:1766.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Bast DJ, Athamna A, Duncan CL, et al. Type II topoisomerase mutations in Bacillus anthracis associated with high-level fluoroquinolone resistance. J Antimicrob Chemother. 2004;54:90–4.Google Scholar
  78. 78.
    Hooper DC. Mechanisms of quinolone resistance. In: Hooper DC, Rubinstein E, editors. Quinolone antimicrobial agents. 3rd ed. Washington, DC: ASM Press; 2003. p. 41–67.Google Scholar
  79. 79.
    Pomerantsev AP, Shishkova NA, Marinin LI. Comparison of therapeutic effects of antibiotics of the tetracycline group in the treatment of anthrax caused by a strain inheriting tet-gene of plasmid pBC16. Antibiot Khimioter. 1992;37:31–4.Google Scholar
  80. 80.
    Ruhfel RE, Robillard NJ, Thorne CB. Interspecies transduction of plasmids among Bacillus anthracis, B. cereus, and B. thuringiensis. J Bacteriol. 1984;157:708–11.Google Scholar
  81. 81.
    Pomerantsev AP, Staritsyn NA. Behavior of heterologous recombinant plasmid pCET in cells of Bacillus anthracis. Genetika. 1996;32:500–9.Google Scholar
  82. 82.
    Testa RT, Petersen PJ, Jacobus NV, Sum PE, Lee VJ, Tally FP. In vitro and in vivo antibacterial activities of the glycylcyclines, a new class of semisynthetic tetracyclines. Antimicrob Agents Chemother. 1993;37:2270–7.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Ivins BE, Welkos SL, Knudson GB, Leblanc DJ. Transposon Tn916 mutagenesis in Bacillus anthracis. Infect Immun. 1988;56:176–81.Google Scholar
  84. 84.
    Koehler TM. Bacillus anthracis genetics and virulence gene regulation. In: Koehler TM, editor. Anthrax. Berlin: Springer; 2002. p. 144–61.CrossRefGoogle Scholar
  85. 85.
    Stepanov AV, Marinin LI, Pomerantsev AP, Staritsin NA. Development of novel vaccines against anthrax in man. J Biotechnol. 1996;44:155–60.CrossRefPubMedGoogle Scholar
  86. 86.
    Pomerantsev AP, Sukovatova LV, Marinin LI. Characterization of a Rif-R population of Bacillus anthracis. Antibiot Khimioter. 1993;38:34–8.Google Scholar
  87. 87.
    Pomerantsev AP, Sitaraman R, Galloway CR, Kivovich V, Leppla SH. Genome engineering in Bacillus anthracis using Cre recombinase. Infect Immun. 2006;74:682–93.Google Scholar
  88. 88.
    Gutman LT. Yersinia. In: Joklik WK, Willett HP, Amos DB, Wilfert CM, editors. Zinsser microbiology. 19th ed. Norwalk, CT: Appleton & Lange; 1988. p. 493–501.Google Scholar
  89. 89.
    Butler T. Yersinia infections: centennial of the discovery of the plague bacillus. Clin Infect Dis. 1994;19:655–61. quiz 62–3.CrossRefPubMedGoogle Scholar
  90. 90.
    Galimand M, Guiyoule A, Gerbaud G, et al. Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N Engl J Med. 1997;337:677–80.Google Scholar
  91. 91.
    Guiyoule A, Gerbaud G, Buchrieser C, et al. Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis. 2001;7:43–8.Google Scholar
  92. 92.
    Wong JD, Barash JR, Sandfort RF, Janda JM. Susceptibilities of Yersinia pestis strains to 12 antimicrobial agents. Antimicrob Agents Chemother. 2000;44:1995–6.Google Scholar
  93. 93.
    Kravchenko AN, Mishan'kin BN, Ryzhkov V, et al. Trimethoprim resistance—a differential trait of strains of Yersinia pestis from a variety of voles. Mikrobiol Zh. 1990;52:84–8.Google Scholar
  94. 94.
    Lindler LE, Fan W. Development of a 5′ nuclease assay to detect ciprofloxacin resistant isolates of the biowarfare agent Yersinia pestis. Mol Cell Probes. 2003;17:41–7.Google Scholar
  95. 95.
    Lindler LE, Fan W, Jahan N. Detection of ciprofloxacin-resistant Yersinia pestis by fluorogenic PCR using the LightCycler. J Clin Microbiol. 2001;39:3649–55.Google Scholar
  96. 96.
    Orent W. Plague: the mysterious past and terrifying future of the world’s most dangerous disease. New York: Free Press; 2004.Google Scholar
  97. 97.
    Ryzhko IV, Samokhodkina ED, Tsuraeva RI, Shcherbaniuk AI, Pasiukov VV. Experimental evaluation of prospects for the use of beta-lactams in plague infection caused by pathogens with plasmid resistance to penicillins. Antibiot Khimioter. 1998;43:11–5.PubMedGoogle Scholar
  98. 98.
    Ryzhko IV, Shcherbaniuk AI, Skalyga E, Tsuraeva RI, Moldavan IA. Formation of virulent antigen-modified mutants (Fra-, Fra-Tox-) of plague bacteria resistant to rifampicin and quinolones. Antibiot Khimioter. 2003;48:19–23.PubMedGoogle Scholar
  99. 99.
    Ryzhko IV, Shcherbaniuk AI, Samokhodkina ED, et al. Virulence of rifampicin and quinolone resistant mutants of strains of plague microbe with Fra + and Fra − phenotypes. Antibiot Khimioter. 1994;39:32–6.PubMedGoogle Scholar
  100. 100.
    Ryzhko IV, Tsuraeva RI, Moldavan IA, Shcherbaniuk AI. Efficacy of plague prophylaxis with streptomycin, tetracycline, and rifampicin in simultaneous immunization of white mice by resistant EV NRIEG strain. Antibiot Khimioter. 2004;49:17–21.PubMedGoogle Scholar
  101. 101.
    Grebtsova NN, Lebedeva SA, Cherniavskaia AS. Mutagenic effect during transduction of (Gm-Km)R markers of the R323 plasmid in Yersinia pestis. Mol Gen Mikrobiol Virusol 1985:22–7.Google Scholar
  102. 102.
    Thomas R, Johansson A, Neeson B, et al. Discrimination of human pathogenic subspecies of Francisella tularensis by using restriction fragment length polymorphism. J Clin Microbiol. 2003;41:50–7.Google Scholar
  103. 103.
    Molins CR, Delorey MJ, Yockey BM, et al. Virulence differences among Francisella tularensis subsp. tularensis clades in mice. PLoS One. 2010;5:e10205.Google Scholar
  104. 104.
    Vogler A, Birdsell D, Price L, Bowers J, et al. Phylogeography of Francisella tularensis: global expansion of a highly fit clone. J Bacteriol. 2009;191(8):2474–84.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Karlsson E, Svensson K, Lindgren P, et al. The phylogeographic pattern of Francisella tularensis in Sweden indicates a Scandinavian origin of Eurosiberian tularaemia. Environ Microbiol. 2013;15:634–45.CrossRefPubMedGoogle Scholar
  106. 106.
    Ellis J, Oyston PC, Green M, Titball RW. Tularemia. Clin Microbiol Rev. 2002;15:631–46.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    McCrumb FR. Aerosol infection of man with Pasteurella tularensis. Bacteriol Rev. 1961;25:262–7.Google Scholar
  108. 108.
    Baker CN, Hollis DG, Thornsberry C. Antimicrobial susceptibility testing of Francisella tularensis with a modified Mueller-Hinton broth. J Clin Microbiol. 1985;22:212–5.Google Scholar
  109. 109.
    Vasi'lev NT, Oborin VA, Vasi’lev PG, Glushkova OV, Kravets ID, Levchuk BA. Sensitivity spectrum of Francisella tularensis to antibiotics and synthetic antibacterial drugs. Antibiot Khimioter. 1989;34:662–5.Google Scholar
  110. 110.
    Cross JT, Jacobs RF. Tularemia: treatment failures with outpatient use of ceftriaxone. Clin Infect Dis. 1993;17:976–80.CrossRefPubMedGoogle Scholar
  111. 111.
    LoVullo ED, Sherrill LA, Perez LL, Reader MD, Pavelka Jr MS. Genetic analysis of beta-lactam antibiotic resistance in Francisella tularensis, Tularemia workshop. Rochester: University of Rochester Medical Center; 2005.Google Scholar
  112. 112.
    Pavlov VM, Mokrievich AN, Volkovoy K. Cryptic plasmid pFNL10 from Francisella novicida-like F6168: the base of plasmid vectors for Francisella tularensis. FEMS Immunol Med Microbiol. 1996;13:253–6.Google Scholar
  113. 113.
    Norqvist A, Kuoppa K, Sandstrom G. Construction of a shuttle vector for use in Francisella tularensis. FEMS Immunol Med Microbiol. 1996;13:257–60.Google Scholar
  114. 114.
    Maier TM, Havig A, Casey M, Nano FE, Frank DW, Zahrt TC. Construction and characterization of a highly efficient Francisella shuttle plasmid. Appl Environ Microbiol. 2004;70:7511–9.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Pomerantsev AP, Obuchi M, Ohara Y. Nucleotide sequence, structural organization, and functional characterization of the small recombinant plasmid pOM1 that is specific for Francisella tularensis. Plasmid. 2001;46:86–94.Google Scholar
  116. 116.
    Lauriano CM, Barker JR, Nano FE, Arulanandam BP, Klose KE. Allelic exchange in Francisella tularensis using PCR products. FEMS Microbiol Lett. 2003;229:195–202.Google Scholar
  117. 117.
    Melioidosis. www.cdc.gov/melioidosis. 2012.
  118. 118.
    Jenney AW, Lum G, Fisher DA, Currie BJ. Antibiotic susceptibility of Burkholderia pseudomallei from tropical northern Australia and implications for therapy of melioidosis. Int J Antimicrob Agents. 2001;17:109–13.Google Scholar
  119. 119.
    Yamamoto T, Naigowit P, Dejsirilert S, et al. In vitro susceptibilities of Pseudomonas pseudomallei to 27 antimicrobial agents. Antimicrob Agents Chemother. 1990;34:2027–9.Google Scholar
  120. 120.
    Smith MD, Wuthiekanun V, Walsh AL, White NJ. Susceptibility of Pseudomonas pseudomallei to some newer beta-lactam antibiotics and antibiotic combinations using time-kill studies. J Antimicrob Chemother. 1994;33:145–9.Google Scholar
  121. 121.
    Ashdown LR. In vitro activities of the newer beta-lactam and quinolone antimicrobial agents against Pseudomonas pseudomallei. Antimicrob Agents Chemother. 1988;32:1435–6.Google Scholar
  122. 122.
    Moore RA, DeShazer D, Reckseidler S, Weissman A, Woods DE. Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother. 1999;43:465–70.Google Scholar
  123. 123.
    Thibault FM, Hernandez E, Vidal DR, Girardet M, Cavallo JD. Antibiotic susceptibility of 65 isolates of Burkholderia pseudomallei and Burkholderia mallei to 35 antimicrobial agents. J Antimicrob Chemother. 2004;54:1134–8.Google Scholar
  124. 124.
    Podnecky NL, Wuthiekanun V, Peacock SJ, Schweizer HP. The BpeEF-OprC efflux pump is responsible for widespread trimethoprim resistance in clinical and environmental Burkholderia pseudomallei isolates. Antimicrob Agents Chemother. 2013;57:4381–6.Google Scholar
  125. 125.
    Liu B, Pop M. ARDB-antibiotic resistance genes database. Nucleic Acids Res. 2009;37(Database issue):D443–7.CrossRefPubMedGoogle Scholar
  126. 126.
    Sookpranee T, Sookpranee M, Mellencamp MA, Preheim LC. Pseudomonas pseudomallei, a common pathogen in Thailand that is resistant to the bactericidal effects of many antibiotics. Antimicrob Agents Chemother. 1991;35:484–9.Google Scholar
  127. 127.
    Abaev IV, Astashkin EI, Pachkunov DM, Stagis NI, Shitov VT, Svetoch EA. Pseudomonas mallei and Pseudomonas pseudomallei: introduction and maintenance of natural and recombinant plasmid replicons. Mol Gen Mikrobiol Virusol 1995:28–36.Google Scholar
  128. 128.
    Zakharenko VI, Gorelov VN, Seliutina DF, Kulakov Iu K, Nenashev AV, Skavronskaia AG. Functional properties of the pOV13 plasmid as a vector for DNA cloning in a broad spectrum of gram negative bacteria. Mol Gen Mikrobiol Virusol 1990:22–6.Google Scholar
  129. 129.
    Coenye T, Mahenthiralingam E, LiPuma J. Burkholderia: from genomes to function. Norfolk, UK: Caister Academic Press; 2014.Google Scholar
  130. 130.
    Blancou J. Early methods for the surveillance and control of glanders in Europe. Rev Sci Tech. 1994;13:545–57.CrossRefPubMedGoogle Scholar
  131. 131.
    Galyov E, Brett P, DeShazer D. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. Annu Rev Microbiol. 2010;64:495–517.CrossRefPubMedGoogle Scholar
  132. 132.
    Nierman WC, DeShazer D, Kim HS, et al. Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A. 2004;101:14246–51.Google Scholar
  133. 133.
    Kenny DJ, Russell P, Rogers D, Eley SM, Titball RW. In vitro susceptibilities of Burkholderia mallei in comparison to those of other pathogenic Burkholderia spp. Antimicrob Agents Chemother. 1999;43:2773–5.Google Scholar
  134. 134.
    Dance DA, Wuthiekanun V, Chaowagul W, Suputtamongkol Y, White NJ. Development of resistance to ceftazidime and co-amoxiclav in Pseudomonas pseudomallei. J Antimicrob Chemother. 1991;28:321–4.Google Scholar
  135. 135.
    Osterman B, Moriyon I. International Committee on Systematics of Prokaryotes: subcommittee on the taxonomy of Brucella. Int J Syst Evol Microbiol. 2006;56:1173–5.CrossRefGoogle Scholar
  136. 136.
    Ficht T. Brucella taxonomy and evolution. Future Microbiol. 2010;5:859–66.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Tiller RV, Gee JE, Lonsway DR, et al. Identification of an unusual Brucella strain (BO2) from a lung biopsy in a 52 year-old patient with chronic destructive pneumonia. BMC Microbiol. 2010;10:23.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Mantur BG, Mangalgi SS, Mulimani M. Brucella melitensis—a sexually transmissible agent? Lancet. 1996;347:1763.Google Scholar
  139. 139.
    Naparstek E, Block CS, Slavin S. Transmission of brucellosis by bone marrow transplantation. Lancet. 1982;1:574–5.CrossRefPubMedGoogle Scholar
  140. 140.
    Pappas G, Panagopoulou P, Christou L, Akritidis N. Brucella as a biological weapon. Cell Mol Life Sci. 2006;63:2229–36.CrossRefPubMedGoogle Scholar
  141. 141.
    Mortensen JE, Moore DG, Clarridge JE, Young EJ. Antimicrobial susceptibility of clinical isolates of Brucella. Diagn Microbiol Infect Dis. 1986;5:163–9.CrossRefPubMedGoogle Scholar
  142. 142.
    Bosch J, Linares J, Lopez de Goicoechea MJ, Ariza J, Cisnal MC, Martin R. In-vitro activity of ciprofloxacin, ceftriaxone and five other antimicrobial agents against 95 strains of Brucella melitensis. J Antimicrob Chemother. 1986;17:459–61.Google Scholar
  143. 143.
    Trujillano-Martin I, Garcia-Sanchez E, Martinez IM, Fresnadillo MJ, Garcia-Sanchez JE, Garcia-Rodriguez JA. In vitro activities of six new fluoroquinolones against Brucella melitensis. Antimicrob Agents Chemother. 1999;43:194–5.Google Scholar
  144. 144.
    Mateu-de-Antonio EM, Martin M. In vitro efficacy of several antimicrobial combinations against Brucella canis and Brucella melitensis strains isolated from dogs. Vet Microbiol. 1995;45:1–10.Google Scholar
  145. 145.
    Braibant M, Guilloteau L, Zygmunt MS. Functional characterization of Brucella melitensis NorMI, an efflux pump belonging to the multidrug and toxic compound extrusion family. Antimicrob Agents Chemother. 2002;46:3050–3.Google Scholar
  146. 146.
    Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006;19:382–402.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Gorelov VN, Gubina EA, Grekova NA, Skavronskaia AG. The possibility of creating a vaccinal strain of Brucella abortus 19-BA with multiple antibiotic resistance. Zh Mikrobiol Epidemiol Immunobiol 1991:2–4.Google Scholar
  148. 148.
    Drancourt M, Raoult D. Coxiellaceae. In: Brenner D, Krieg N, Staley J, editors. Bergey’s manual of systematic bacteriology. New York: Springer; 2005. p. 237–41.Google Scholar
  149. 149.
    Raoult D, Levy PY, Harle JR, et al. Chronic Q fever: diagnosis and follow-up. Ann N Y Acad Sci. 1990;590:51–60.CrossRefPubMedGoogle Scholar
  150. 150.
    Omsland A, Cockrell DC, Howe D, et al. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci U S A. 2009;106:4430–4.Google Scholar
  151. 151.
    Samuel JE. Developmental cycle of Coxiella burnetii. In: Brun YV, Shimkets LJ, editors. Procaryotic development. Washington, DC: ASM Press; 2000. p. 427–40.Google Scholar
  152. 152.
    Scott GH, Williams JC. Susceptibility of Coxiella burnetii to chemical disinfectants. Ann N Y Acad Sci. 1990;590:291–6.Google Scholar
  153. 153.
    Waag DM, Thompson HA. Pathogenesis and Immunity of Coxiella Burnetii. In: Lindler L, Lebeda FJ, Korch GW, editors. Biological weapons defense: infectious diseases and counterbioterrorism. Totowa, NJ: Humana Press; 2005. p. 185–207.CrossRefGoogle Scholar
  154. 154.
    Christopher GW, Cieslak TJ, Pavlin JA, Eitzen Jr EM. Biological warfare. A historical perspective. JAMA. 1997;278:412–7.CrossRefPubMedGoogle Scholar
  155. 155.
    Greenfield RA, Drevets DA, Machado LJ, Voskuhl GW, Cornea P, Bronze MS. Bacterial pathogens as biological weapons and agents of bioterrorism. Am J Med Sci. 2002;323:299–315.CrossRefPubMedGoogle Scholar
  156. 156.
    Jackson ER. Comparative efficacy of several antibiotics on experimental rickettsial infections in embryonated eggs. Antibiot Chemother. 1951;1:231–5.Google Scholar
  157. 157.
    Yeaman MR, Mitscher LA, Baca OG. In vitro susceptibility of Coxiella burnetii to antibiotics, including several quinolones. Antimicrob Agents Chemother. 1987;31:1079–84.Google Scholar
  158. 158.
    Zamboni DS, Mortara RA, Freymuller E, Rabinovitch M. Mouse resident peritoneal macrophages partially control in vitro infection with Coxiella burnetii phase II. Microbes Infect. 2002;4:591–8.Google Scholar
  159. 159.
    Raoult D, Torres H, Drancourt M. Shell-vial assay: evaluation of a new technique for determining antibiotic susceptibility, tested in 13 isolates of Coxiella burnetii. Antimicrob Agents Chemother. 1991;35:2070–7.Google Scholar
  160. 160.
    Brennan RE, Samuel JE. Evaluation of Coxiella burnetii antibiotic susceptibilities by real-time PCR assay. J Clin Microbiol. 2003;41:1869–74.Google Scholar
  161. 161.
    Boulos A, Rolain JM, Maurin M, Raoult D. Measurement of the antibiotic susceptibility of Coxiella burnetii using real time PCR. Int J Antimicrob Agents. 2004;23:169–74.Google Scholar
  162. 162.
    Rolain JM, Maurin M, Raoult D. Bacteriostatic and bactericidal activities of moxifloxacin against Coxiella burnetii. Antimicrob Agents Chemother. 2001;45:301–2.Google Scholar
  163. 163.
    Raoult D, Houpikian P, Tissot Dupont H, Riss JM, Arditi-Djiane J, Brouqui P. Treatment of Q fever endocarditis: comparison of 2 regimens containing doxycycline and ofloxacin or hydroxychloroquine. Arch Intern Med. 1999;159:167–73.CrossRefPubMedGoogle Scholar
  164. 164.
    Maurin M, Benoliel AM, Bongrand P, Raoult D. Phagolysosomal alkalinization and the bactericidal effect of antibiotics: the Coxiella burnetii paradigm. J Infect Dis. 1992;166:1097–102.Google Scholar
  165. 165.
    Seshadri R, Paulsen IT, Eisen JA, et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A. 2003;100:5455–60.Google Scholar
  166. 166.
    Yeaman MR, Baca OG. Mechanisms that may account for differential antibiotic susceptibilities among Coxiella burnetii isolates. Antimicrob Agents Chemother. 1991;35:948–54.Google Scholar
  167. 167.
    Raoult D, Bres P, Drancourt M, Vestris G. In vitro susceptibilities of Coxiella burnetii, Rickettsia rickettsii, and Rickettsia conorii to the fluoroquinolone sparfloxacin. Antimicrob Agents Chemother. 1991;35:88–91.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Yeaman MR, Roman MJ, Baca OG. Antibiotic susceptibilities of two Coxiella burnetii isolates implicated in distinct clinical syndromes. Antimicrob Agents Chemother. 1989;33:1052–7.Google Scholar
  169. 169.
    Musso D, Drancourt M, Osscini S, Raoult D. Sequence of quinolone resistance-determining region of gyrA gene for clinical isolates and for an in vitro-selected quinolone-resistant strain of Coxiella burnetii. Antimicrob Agents Chemother. 1996;40:870–3.Google Scholar
  170. 170.
    Spyridaki I, Psaroulaki A, Aransay A, Scoulica E, Tselentis Y. Diagnosis of quinolone-resistant Coxiella burnetii strains by PCR-RFLP. J Clin Lab Anal. 2000;14:59–63.Google Scholar
  171. 171.
    Brezina R, Schramek S, Kazar J. Selection of chlortetracycline-resistant strain of Coxiella burnetii. Acta Virol. 1975;19:496.Google Scholar
  172. 172.
    Espy MJ, Uhl JR, Sloan LM, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev. 2006;19:165–256.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Ng LK, Martin I, Alfa M, Mulvey M. Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes. 2001;15:209–15.CrossRefPubMedGoogle Scholar
  174. 174.
    Ivnitski D, O'Neil DJ, Gattuso A, Schlicht R, Calidonna M, Fisher R. Nucleic acid approaches for detection and identification of biological warfare and infectious disease agents. Biotechniques. 2003;35:862–9.PubMedGoogle Scholar
  175. 175.
    Burton JE, Oshota OJ, North E, et al. Development of a multi-pathogen oligonucleotide microarray for detection of Bacillus anthracis. Mol Cell Probes. 2005;19:349–57.Google Scholar
  176. 176.
    CLSI. Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. Wayne, PA: Clinical and Laboratory Standards Institute; 2006.Google Scholar
  177. 177.
    Bonacorsi SP, Scavizzi MR, Guiyoule A, Amouroux JH, Carniel E. Assessment of a fluoroquinolone, three beta-lactams, two aminoglycosides, and a cycline in treatment of murine Yersinia pestis infection. Antimicrob Agents Chemother. 1994;38:481–6.Google Scholar
  178. 178.
    Smith MD, Vinh DX, Nguyen TT, Wain J, Thung D, White NJ. In vitro antimicrobial susceptibilities of strains of Yersinia pestis. Antimicrob Agents Chemother. 1995;39:2153–4.Google Scholar
  179. 179.
    Frean JA, Arntzen L, Capper T, Bryskier A, Klugman KP. In vitro activities of 14 antibiotics against 100 human isolates of Yersinia pestis from a southern African plague focus. Antimicrob Agents Chemother. 1996;40:2646–7.Google Scholar
  180. 180.
    Frean J, Klugman KP, Arntzen L, Bukofzer S. Susceptibility of Yersinia pestis to novel and conventional antimicrobial agents. J Antimicrob Chemother. 2003;52:294–6.Google Scholar
  181. 181.
    Johansson A, Urich SK, Chu MC, Sjostedt A, Tarnvik A. In vitro susceptibility to quinolones of Francisella tularensis subspecies tularensis. Scand J Infect Dis. 2002;34:327–30.Google Scholar
  182. 182.
    Ikaheimo I, Syrjala H, Karhukorpi J, Schildt R, Koskela M. In vitro antibiotic susceptibility of Francisella tularensis isolated from humans and animals. J Antimicrob Chemother. 2000;46:287–90.Google Scholar
  183. 183.
    Heine HS, England MJ, Waag DM, Byrne WR. In vitro antibiotic susceptibilities of Burkholderia mallei (causative agent of glanders) determined by broth microdilution and E-test. Antimicrob Agents Chemother. 2001;45:2119–21.Google Scholar
  184. 184.
    Smith MD, Wuthiekanun V, Walsh AL, White NJ. In-vitro activity of carbapenem antibiotics against beta-lactam susceptible and resistant strains of Burkholderia pseudomallei. J Antimicrob Chemother. 1996;37:611–5.Google Scholar
  185. 185.
    Baykam N, Esener H, Ergonul O, Eren S, Celikbas AK, Dokuzoguz B. In vitro antimicrobial susceptibility of Brucella species. Int J Antimicrob Agents. 2004;23:405–7.CrossRefPubMedGoogle Scholar
  186. 186.
    Akova M, Gur D, Livermore DM, Kocagoz T, Akalin HE. In vitro activities of antibiotics alone and in combination against Brucella melitensis at neutral and acidic pHs. Antimicrob Agents Chemother. 1999;43:1298–300.Google Scholar
  187. 187.
    Trujillano-Martin I, Garcia-Sanchez E, Fresnadillo MJ, Garcia-Sanchez JE, Garcia-Rodriguez JA, Montes MI. In vitro activities of five new antimicrobial agents against Brucella melitensis. Int J Antimicrob Agents. 1999;12:185–6.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Principal Investigator, Biodefense Research and Development LaboratoryCenters for Disease Control and PreventionAtlantaUSA
  2. 2.Division of Foodborne, Waterborne, and Environmental DiseasesNational Center for Emerging, Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention (Retired)AtlantaUSA

Personalised recommendations