Advertisement

Antimicrobial Resistance of Anaerobic Bacteria

  • Itzhak BrookEmail author
Chapter

Abstract

Infections caused by anaerobic bacteria are common, and may be serious and life-threatening. Anaerobes are the predominant components of the bacterial flora of normal human skin and mucous membranes [1] and they are a common cause of bacterial infections of endogenous origin. Because of their fastidious nature, they are difficult to isolate from infectious sites and are often overlooked. Their isolation requires appropriate methods of collection, transportation, and cultivation of specimens [2–5]. Treatment of anaerobic bacterial infections is complicated by the relatively slow growth of these organisms (which makes diagnosis in the laboratory only possible after several days), by the frequent polymicrobial nature of the infection, and by the growing resistance of anaerobic bacteria to antimicrobial agents.

Keywords

Anaerobic bacteria Susceptibility Resistance Bacteroides fragilis Clostridium Prevotella Fusobacterium Beta-lactamase Clindamycin Metronidazole 

References

  1. 1.
    Hentges DJ. The anaerobic microflora of the human body. Clin Infect Dis. 1993;16(4):S175–80.PubMedCrossRefGoogle Scholar
  2. 2.
    Brook I. Anaerobic infections diagnosis and management. New York: Informa Healthcare USA, Inc.; 2007.CrossRefGoogle Scholar
  3. 3.
    Finegold SM. Anaerobic bacteria in human disease. New York: Academic; 1977.Google Scholar
  4. 4.
    Jousimies-Somer HR, Summanen P, Baron EJ, Citron DM, Wexler HM, Finegold SM. Wadsworth-KTL anaerobic bacteriology manual. 6th ed. Belmont, CA: Star Publishing; 2002.Google Scholar
  5. 5.
    Nagy E. Anaerobic infections: update on treatment considerations. Drugs. 2010;70:841–58.PubMedCrossRefGoogle Scholar
  6. 6.
    Hecht DW. Prevalence of antibiotic resistance in anaerobic bacteria: worrisome developments. Clin Infect Dis. 2004;39:92–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Goldstein EJC, Citron DM, Cole RE, Rangel DM, Seid AS, Ostovari MI. Cefoxitin in the treatment of aerobic/anaerobic infections: prospective correlation of in vitro susceptibility methods with clinical outcome. Hosp Pract Symp Suppl. 1990;25 Suppl 4:38–45.CrossRefGoogle Scholar
  8. 8.
    Goldstein EJC, Solomkin JS, Citron DM, Alder D. Clinical efficacy and correlation of clinical outcomes with in vitro susceptibility for anaerobic bacteria in patients with complicated intra-abdominal infections treated with moxifloxacin. Clin Infect Dis. 2011;53:1074–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Snydman DR, Cuchural Jr GJ, McDermott L, Gill M. Correlation of various in vitro testing methods with clinical outcomes in patients with Bacteroides fragilis group infections treated with cefoxitin: a retrospective analysis. Antimicrob Agents Chemother. 1992;36:5404.CrossRefGoogle Scholar
  10. 10.
    Hecht DW. Routine anaerobic blood cultures: back where we started? Clin Infect Dis. 2007;44:901–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Hung MN, Chen SY, Wang JL, Chang SC, Hsueh PR, Liao CH, Chen YC. Community-acquired anaerobic bacteremia in adults: one-year experience in a medical center. J Microbiol Immunol Infect. 2005;38:436–43.PubMedGoogle Scholar
  12. 12.
    Lassmann B, Gustafson DR, Wood CM, Rosenblatt JE. Reemergence of anaerobic bacteremia. Clin Infect Dis. 2007;44:895–900.PubMedCrossRefGoogle Scholar
  13. 13.
    Nguyen MH, Yu VL, Morris AJ, McDermott L, Wagener MW, Harrell L, Snydman DR. Antimicrobial resistance and clinical outcome of Bacteroides bacteremia: findings of a multicenter prospective observational trial. Clin Infect Dis. 2000;30:870–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Salonen JH, Eerola E, Meurman O. Clinical significance and outcome of anaerobic bacteremia. Clin Infect Dis. 1998;26:1413–17.PubMedCrossRefGoogle Scholar
  15. 15.
    Citron DM, Hecht DW. Susceptibility test methods: anaerobic bacteria. In: Versalovic J, editor. Manual of clinical microbiology. 10th ed. Washington, DC: American Society for Microbiology Press; 2011. p. 1204–14.CrossRefGoogle Scholar
  16. 16.
    Clinical and Laboratory Standards Institute. Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved Standard-eighth edition. CLSI Document M11-A9. Wayne, PA: Clinical and Laboratory Standards; 2012.Google Scholar
  17. 17.
    Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty second informational supplement. CLSI Document M100-S22. Wayne, PA: CLSI; 2012.Google Scholar
  18. 18.
    Wexler HM. Bacteroides—the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007;20:593–621.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Citron DM, Goldstein EJ, Merriam CV, Lipsky BA, Abramson MA. Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents. J Clin Microbiol. 2007;45:2819–28.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Goldstein EJC, Citron DM, Goldman PJ, Goldman RJ. National survey of anaerobic culture and susceptibility methods: III. Anaerobe. 2008;14:68–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Sherwood JE, Fraser S, Citron DM, Wexler H, Blakely G, Jobling K, Patrick S. Multi-drug resistant Bacteroides fragilis recovered from blood and severe leg wounds caused by an improvised explosive device (IED) in Afghanistan. Anaerobe. 2011;17:152–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Snydman DR, Jacobus NV, McDermott LA, Golan Y, Goldstein EJ, Harrell L, Jenkins S, Newton D, Pierson C, Rosenblatt J, Venezia R, Gorbach SL, Queenan AM, Hecht DW. Update on resistance of Bacteroides fragilis group and related species with special attention to carbapenems 2006–2009. Anaerobe. 2011;17:147–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Hecht DW. Anaerobes: antibiotic resistance, clinical significance, and the role of susceptibility testing. Anaerobe. 2006;12:115–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Katsandri A, Papaparaskevas J, Pantazatou A, Petrikkos GL, Thomopoulos G, Houhoula DP, Avlamis A. Two cases of infections due to multidrug-resistant Bacteroides fragilis group strains. J Clin Microbiol. 2006;44:3465–7.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Liu CY, Huang YT, Liao CH, Yen LC, Lin HY, Hsueh PR. Increasing trends in antimicrobial resistance among clinically important anaerobes and Bacteroides fragilis isolates causing nosocomial infections: emerging resistance to carbapenems. Antimicrob Agents Chemother. 2008;52:3161–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Nagy E, Urbán E, Nord CE, ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: Twenty years experience. Clin Microbiol Infect. 2011;17:371–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Snydman DR, Jacobus NV, McDermott LA, Supran S, Cuchural Jr GJ, Finegold S, Harrell L, Hecht DW, Iannini P, Jenkins S, Pierson C, Rihs J, Gorbach SL. Multicenter study of in vitro susceptibility of the Bacteroides fragilis group, 1995 to 1996, with comparison of resistance trends from 1990 to 1996. Antimicrob Agents Chemother. 1999;43:2417–22.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Snydman DR, Jacobus NV, McDermott LA, Golan Y, Hecht DW, Goldstein EJ, Harrell L, Jenkins S, Newton D, Pierson C, Rih JD, Yu VL, Venezia R, Finegold SM, Rosenblatt JE, Gorbach SL. Lessons learned from the anaerobe survey: historical perspective and review of the most recent data (2005–2007). Clin Infect Dis. 2010;50 Suppl 1:S26–33.PubMedCrossRefGoogle Scholar
  29. 29.
    Hecht DW, Osmolski JR, O’Keefe JP. Variation in the susceptibility of Bacteroides fragilis group isolates from six Chicago hospitals. Clin Infect Dis. 1993;16 Suppl 4:S357–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Koeth LM, et al. Surveillance of susceptibility patterns in 1297 European and US anaerobic and capnophilic isolates to co-amoxiclav and five other antimicrobial agents. J Antimicrob Chemother. 2004;53:1039–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Teng LJ, Hsueh PR, Tsai JC, Liaw SJ, Ho SW, Luh KT. High incidence of cefoxitin and clindamycin resistance among anaerobes in Taiwan. Antimicrob Agents Chemother. 2002;46:2908–13.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Aldridge K, Aldridge KE, Ashcraft D, Cambre K, Pierson CL, Jenkins SG, Rosenblatt JE. Multicenter survey of the changing in vitro antimicrobial susceptibilities of clinical isolates of Bacteroides fragilis group, Prevotella, Fusobacterium, Porphyromonas, and Peptostreptococcus species. Antimicrob Agents Chemother. 2001;45:1238–43.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Goldstein EJC, Citron DM. Activity of a novel carbapenem, doripenem against anaerobic pathogens. Diag Micro Infect Dis. 2009;63:447–54.CrossRefGoogle Scholar
  34. 34.
    Goldstein EJC, Citron DM, Hecht DW. Chapter 6: Resistance in anaerobic bacteria. In: Fong IW, Drlica K, editors. Antimicrobial resistance and implications for the 21st century. New York: Springer; 2008. p. 207–29.CrossRefGoogle Scholar
  35. 35.
    Ednie LM, Jacobs MR, Appelbaum PC. Activities of gatifloxacin compared to those of seven other agents against anaerobic organisms. Antimicrob Agents Chemother. 1998;42:2459–62.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Oh H, Hedberg M, Edlund C. Efflux-mediated fluoroquinolone resistance in the Bacteroides fragilis group. Anaerobe. 2002;8:277–82.CrossRefGoogle Scholar
  37. 37.
    Maestre JR, Bascones A, Sánchez P, Matesanz P, Aguilar L, Giménez MJ, Pérez-Balcabao I, Granizo JJ, Prieto J. Odontogenic bacteria in periodontal disease and resistance patterns to common antibiotics used as treatment and prophylaxis in odontology in Spain. Rev Esp Quimioter. 2007;20:61–7.PubMedGoogle Scholar
  38. 38.
    Goldstein EJC, Citron DM, Merriam CV, Warren YA, Tyrrell KL, Fernandez HT. Comparative in vitro susceptibilities of 396 unusual anaerobic strains to tigecycline and eight other antimicrobial agents. Antimicrob Agents Chemother. 2006;50:3507–13.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Milazzo I, Blandino G, Caccamo F, Musumeci R, Nicoletti G, Speciale A. Faropenem, a new oral penem: antibacterial activity against selected anaerobic and fastidious periodontal isolates. J Antimicrob Chemother. 2003;51:721–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Goldstein EJC, Citron DM, Goldman RJ, Claros MC, Hunt-Gerardo S. United States hospital survey of anaerobic culture and susceptibility methods II. Anaerobe. 1995;1:309–14.PubMedCrossRefGoogle Scholar
  41. 41.
    Nyfors S, Könönen E, Syrjänen R, Komulainen E, Jousimies-Somer H. Emergence of penicillin resistance among Fusobacterium nucleatum populations of commensal oral flora during early childhood. J Antimicrob Chemother. 2003;51:107–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Brook I, Calhoun L, Yocum P. Beta-lactamase-producing isolates of Bacteroides species from children. Antimicrob Agents Chemother. 1980;18:264–6.CrossRefGoogle Scholar
  43. 43.
    Goldstein EJC, Citron DM, Merriam CV, Warren Y, Tyrrell K, Fernandez HT. In vitro activities of dalbavancin and nine comparator agents against anaerobic Gram-positive species and corynebacteria. Antimicrob Agents Chemother. 2003;47:1968–71.Google Scholar
  44. 44.
    Hecht DW, Osmolski JR. Activities of garenoxacin (BMS-284756) and other agents against anaerobic clinical isolates. Antimicrob Agents Chemother. 2003;47:910–16.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Credito KL, Appelbaum PC. Activity of OPT-80, a novel macrocycle, compared with those of eight other agents against selected anaerobic species. Antimicrob Agents Chemother. 2004;48:4430–4.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Pumbwe L, Wareham DW, Aduse-Opoku J, Brazier JS, Wexler HM. Genetic analysis of mechanisms of multidrug resistance in a clinical isolate of Bacteroides fragilis. Clin Microbiol Infect. 2007;13:183–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Seifert H, Dalhoff A. German multicentre survey of the antibiotic susceptibility of Bacteroides fragilis group and Prevotella species isolated from intra-abdominal infections: results from the PRISMA study. J Antimicrob Chemother. 2010;65:2405–10.PubMedCrossRefGoogle Scholar
  48. 48.
    Schapiro JM, Gupta R, Stefansson E, Fang FC, Limaye AP. Isolation of metronidazole-resistant Bacteroides fragilis carrying the nimA nitroreductase gene from a patient in Washington State. J Clin Microbiol. 2004;42:4127–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wareham DW, Wilks M, Ahmed D, Brazier JS, Millar M. Anaerobic sepsis due to multidrug-resistant Bacteroides fragilis: microbiological cure and clinical response with linezolid therapy. Clin Infect Dis. 2005;40:e67–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Zahar JR, Farhat H, Chachaty E, Meshaka P, Antoun S, Nitenberg G. Incidence and clinical significance of anaerobic bacteraemia in cancer patients: a 6-year retrospective study. Clin Microbiol Infect. 2005;11:724–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Dubreuil L, Odou MF. Anaerobic bacteria and antibiotics: what kind of unexpected resistance could I find in my laboratory tomorrow? Anaerobe. 2010;16:555–9.PubMedCrossRefGoogle Scholar
  52. 52.
    European Committee on Antimicrobial Susceptibility Testing: Setting breakpoints for new antimicrobial agents. EUCAST SOP 1.0; 2010. http://www.eucast.org.
  53. 53.
    Legaria MC, Bianchini HM, Castello L, Carloni G, Di Martino A, Fernández Canigia L, Litterio M, Rollet R, Rossetti A, Predari SC. [First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans/Anaerobic Subcommittee of the Asociacion Argentina de Microbiologia]. Rev Argent Microbiol. 2011;43:51–66.PubMedGoogle Scholar
  54. 54.
    Nagayama A, Yamaguchi K, Watanabe K, Tanaka M, Kobayashi I, Nagasawa Z. Final report from the committee on antimicrobial susceptibility testing, Japanese Society of Chemotherapy, on the agar dilution method (2007). J Infect Chemother. 2008;14:383–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Smith AJ, Lockhart DE, Tyers A, Poxton IR. A survey of the identification and susceptibility testing of anaerobes in diagnostic microbiology laboratories in Scotland, UK. J Antimicrob Chemother. 2010;65:805.PubMedCrossRefGoogle Scholar
  56. 56.
    Goldstein EJC, Citron DM, Goldman R. National hospital survey of anaerobic culture and susceptibility methods: results and recommendations for improvement. J Clin Microbiol. 1992;30:1529–34.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Boyanova L, Kolarov R, Mitov I. Antimicrobial resistance and the management of anaerobic infections. Expert Rev Anti Infect Ther. 2007;5:685–701.PubMedCrossRefGoogle Scholar
  58. 58.
    Croco JL, Erwin ME, Jennings JM, Putnam LR, Jones RN. Evaluation of the Etest for antimicrobial spectrum and potency determinations of anaerobes associated with bacterial vaginosis and peritonitis. Diagn Microbiol Infect Dis. 1994;20:213–19.PubMedCrossRefGoogle Scholar
  59. 59.
    Edmiston CE, Krepel CJ, Seabrook GR, Somberg LR, Nakeeb A, Cambria RA, Towne JB. In vitro activities of moxifloxacin against 900 aerobic and anaerobic surgical isolates from patients with intra-abdominal and diabetic foot infections. Antimicrob Agents Chemother. 2004;48:1012–16.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Poulet PP, Duffaut D, Lodter JP. Evaluation of the Etest for determining the in-vitro susceptibilities of Prevotella intermedia isolates to metronidazole [letter]. J Antimicrob Chemother. 1999;43:610–11.PubMedCrossRefGoogle Scholar
  61. 61.
    Rosenblatt JE, Gustafson DR. Evaluation of the Etest for susceptibility testing of anaerobic bacteria. Diagn Microbiol Infect Dis. 1995;22:279–84.PubMedCrossRefGoogle Scholar
  62. 62.
    Schieven BC, Massey VE, Lannigan R, Hussain Z. Evaluation of susceptibility of anaerobic organisms by the Etest and the reference agar dilution method. Clin Infect Dis. 1995;20 Suppl 2:S337–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Wong SS, Woo PC, Luk WK, Yuen KY. Susceptibility testing of Clostridium difficile against metronidazole and vancomycin by disk diffusion and Etest. Diagn Microbiol Infect Dis. 1999;34:1–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Wexler HM, Molitoris E, Jashnian F, Finegold SM. 1991. Comparison of spiral gradient to conventional agar dilution for susceptibility testing of anaerobic bacteria. Antimicrob Agents Chemother. 1991;35:1196–202.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Schalkowsky S. Measures of susceptibility from a spiral gradient of drug concentrations. In: Poupard JA, editor. Antimicrobial susceptibility testing. New York: Plenum Press; 1994. p. 107–20.CrossRefGoogle Scholar
  66. 66.
    Wexler HM, Molitoris E, Murray PR, Washington J, Zabransky RJ, Edelstein PH, Finegold SM. Comparison of spiral gradient endpoint and agar dilution methods for susceptibility testing of anaerobic bacteria: a multilaboratory collaborative evaluation. J Clin Microbiol. 1996;34:170–4.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Wexler HM. Susceptibility testing of anaerobic bacteria: myth, magic, or method? Clin Microbiol Rev. 1991;4:470–84.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wexler HM. Pump it up: occurrence and regulation of multi-drug efflux pumps in Bacteroides fragilis. Anaerobe. 2012;18:200–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Pumbwe L, Curzon M, Wexler HM. Rapid multiplex PCR assay for simultaneous detection of major antibiotic resistance determinants in clinical isolates of Bacteroides fragilis. J Rapid Methods Automation Microbiol. 2008;16:381–93.CrossRefGoogle Scholar
  70. 70.
    Pumbwe L, Chang A, Smith RL, Wexler HM. BmeRABC5 is a multidrug efflux system that can confer metronidazole resistance in Bacteroides fragilis. Microb Drug Resist. 2007;13:96–101.PubMedCrossRefGoogle Scholar
  71. 71.
    Pumbwe L, Glass D, Wexler HM. Efflux pump overexpression in multiple antibiotic resistant mutants of Bacteroides fragilis (BF). Abstr.of the 106th annual meeting. Orlando, FL: ASM.Google Scholar
  72. 72.
    Pumbwe L, Ueda O, Chang A, Smith, Wexler HM. Bacteroides fragilis BmeABC Efflux transporters are coordinately expressed and additively confer intrinsic multi-substrate resistance. Abstracts of the 2005 Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC; 2005.Google Scholar
  73. 73.
    Pumbwe L, Ueda O, Yoshimura F, Chang A, Smith RL, Wexler HM. Bacteroides fragilis BmeABC efflux systems additively confer intrinsic antimicrobial resistance. J Antimicrob Chemother. 2006;58:37–46.PubMedCrossRefGoogle Scholar
  74. 74.
    Rafii F, Park M. Detection and characterization of an ABC transporter in Clostridium hathewayi. Arch Microbiol. 2008;190:417–26.PubMedCrossRefGoogle Scholar
  75. 75.
    Rafii F, Park M, Wynne R. Evidence for active drug efflux in fluoroquinolone resistance in Clostridium hathewayi. Chemotherapy. 2005;51:256–62.PubMedCrossRefGoogle Scholar
  76. 76.
    Spigaglia P, Barbanti F, Mastrantonio P. Multidrug resistance in European Clostridium difficile clinical isolates. J Antimicrob Chemother. 2011;66:2227–34.PubMedCrossRefGoogle Scholar
  77. 77.
    Wexler HM, Finegold SM. Current susceptibility patterns of anaerobic bacteria. Yonsei Med J. 1998;39:495–501.PubMedCrossRefGoogle Scholar
  78. 78.
    Busch DF, Kureshi LA, Sutter VL, Finegold SM. Susceptibility of respiratory tract anaerobes to orally administered penicillins and cephalosporins. Antimicrob Agents Chemother. 1976;10:713–20.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Acuna C, Rabasseda X. Amoxicillin-sulbactam: a clinical and therapeutic review. Drugs Today (Barc). 2001;37:193–210.CrossRefGoogle Scholar
  80. 80.
    Finegold SM. In vitro efficacy of beta-lactam/beta-lactamase inhibitor combinations against bacteria involved in mixed infections. Int J Antimicrob Agents. 1999;12 Suppl 1:S9–14.PubMedCrossRefGoogle Scholar
  81. 81.
    O’Neill BP, Chow A, Dellinger EP, Esachampati S, Gorbach S, Hilfiker M, May A, Nathens AB, Sawyer RG, Bartlett J. Diagnosis and management of complicated intraabdominal infections in adults and children: Guidelines by the Surgical Infection Society and The Infectious Diseases Society of America. Clin Infect Dis. 2010;50:133–64.PubMedCrossRefGoogle Scholar
  82. 82.
    Stevens DL, Bisno AL, Chambers HF, Everett ED, Dellinger P, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan EL, Montoya JG, Wade JC, Infectious Diseases Society of America. Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis. 2005;41:1373–406.PubMedCrossRefGoogle Scholar
  83. 83.
    Goldstein EJC, Citron DM. Resistance trends in antimicrobial susceptibility of anaerobic bacteria, Part I and Part II. Clin Microbiol Newslett. 2011;33:1–14.CrossRefGoogle Scholar
  84. 84.
    Sutter VL, Finegold SM. Susceptibility of anaerobic bacteria to 23 antimicrobial agents. Antimicrob Agents Chemother. 1976;10:736–52.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Goldstein EJC, Citron DM, Vaidya SA, Warren YA, Tyrrell KL, Merriam CV, Fernandez H. In vitro activity of 11 antibiotics against 74 anaerobes isolated from pediatric intra-abdominal infections. Anaerobe. 2006;12:63–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Kirby BD, Busch DF, Citron DM, Finegold SM. Cefoxitin for treatment of infections due to anaerobic bacteria. Clin Infect Dis. 1979;1:113–16.CrossRefGoogle Scholar
  87. 87.
    Perkins RL, Slama TG, Fass RJ, Prior RB, Plouffe JF, Warner JF, File TM. Therapy of skin, soft tissue, and bone infections with cefoxitin sodium. Clin Infect Dis. 1979;1(1):165–9.CrossRefGoogle Scholar
  88. 88.
    Jousimies-Somer HR, Summanen P. Recent taxonomic changes and terminology update of clinically significant anaerobic Gram-negative bacteria (excluding spirochetes). Clin Infect Dis. 2002;35 Suppl 1:S17–21.Google Scholar
  89. 89.
    Aldridge KE, Sanders CV. Susceptibility trending of blood isolates of the Bacteroides fragilis group over a 12-year period to clindamycin, ampicillin-sulbactam, cefoxitin, imipenem, and metronidazole. Anaerobe. 2002;8:301–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Brook I. Intra-abdominal, retroperitoneal, and visceral abscesses in children. Eur J Pediatr Surg. 2004;14:265–73.PubMedCrossRefGoogle Scholar
  91. 91.
    Goldstein EJC. Intra-abdominal anaerobic infections: bacteriology and therapeutic potential of newer antimicrobial carbapenem, fluoroquinolone, and desfluoroquinolone therapeutic agents. Clin Infec Dis. 2002;35 Suppl 1:S106–11.CrossRefGoogle Scholar
  92. 92.
    Hedberg M, Nord CE. ESCMID Study Group on antimicrobial resistance in anaerobic bacteria. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe. Clin Microbiol Infect. 2003;9:475–88.PubMedCrossRefGoogle Scholar
  93. 93.
    Goldstein EJC, Citron DM, Merriam CV, Abramson MA. Infections after elective colorectal surgery: bacteriological analysis of failures in a randomized trial of cefotetan vs. ertapenem prophylaxis. Surg Infect. 2009;10:111–18.CrossRefGoogle Scholar
  94. 94.
    Itani KM, Wilson SE, Awad SS, Jensen EH, Finn TS, Abramson MA. Ertapenem versus cefotetan prophylaxis in colorectal surgery. N Engl J Med. 2006;355:2640–51.PubMedCrossRefGoogle Scholar
  95. 95.
    Solomkin J, Zhao YP, Ma EL, Chen MJ, Hampel B, DRAGON Study Team. Moxifloxacin is non-inferior to combination therapy with ceftriaxone plus metronidazole in patients with community-origin complicated intra-abdominal infections. Int J Antimicrob Agents. 2009;34:439–45.PubMedCrossRefGoogle Scholar
  96. 96.
    Hellinger WC, Brewer NS. Carbapenems and monobactams: imipenem, meropenem, and aztreonam. Mayo Clin Proc. 1999;74:420–34.PubMedCrossRefGoogle Scholar
  97. 97.
    Paterson DL, Depestel DD. Doripenem. Clin Infect Dis. 2009;49:291–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Nicolau DP, Carmeli Y, Crank CW, Goff DA, Graber CJ, Lima AL, Goldstein EJC. Carbapenem stewardship: does ertapenem affect Pseudomonas susceptibility to other carbapenems? A review of the evidence. Int J Antimicrob Agents. 2012;39:11–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Edwards JR. Meropenem: a microbiological overview. J Antimicrob Chemother. 1995;36(Suppl A):1–17.PubMedCrossRefGoogle Scholar
  100. 100.
    Jorgensen JH, Maher LA, Howell AW. Activity of meropenem against antibiotic-resistant or infrequently encountered Gram-negative bacilli. Antimicrob Agents Chemother. 1991;35:2410–14.Google Scholar
  101. 101.
    Kattan JN, Villegas MV, Quinn JP. New developments in carbapenems. Clin Microbiol Infect. 2008;14:1102–11.PubMedCrossRefGoogle Scholar
  102. 102.
    Keating GM, Perry CM. Ertapenem: a review of its use in the treatment of bacterial infections. Drugs. 2005;65:2151–78.PubMedCrossRefGoogle Scholar
  103. 103.
    Kuriyama T, Karasawa T, Nakagawa K, Saiki Y, Yamamoto E, Nakamura S. Bacteriologic features and antimicrobial susceptibility in isolates from orofacial odontogenic infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90:600–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Bush K. Beta-Lactamases of increasing clinical importance. Curr Pharm Des. 1999;5:839–45.PubMedGoogle Scholar
  105. 105.
    Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond (Biol). 1980;289:321–31.CrossRefGoogle Scholar
  106. 106.
    Richmond MH, Sykes RB. The beta-lactamases of Gram-negative bacteria and their possible physiological role. Adv Microb Physiol. 1973;9:31–88.PubMedCrossRefGoogle Scholar
  107. 107.
    Mastrantonio P, Cardines R, Spigaglia P. Oligonucleotide probes for detection of cephalosporinases among Bacteroides strains. Antimicrob Agents Chemother. 1996;40:1014–16.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Jacobs MR, Spangler SK, Appelbaum PC. Beta-lactamase production and susceptibility of US and European anaerobic Gram-negative bacilli to beta-lactams and other agents. Eur J Clin Microbiol Infect Dis. 1992;11:1081–93.Google Scholar
  109. 109.
    Appelbaum PC, Spangler SK, Jacobs MR. Beta-Lactamase production and susceptibilities to amoxicillin, amoxicillin-clavulanate, ticarcillin, ticarcillin-clavulanate, cefoxitin, imipenem and metronidazole of 320 non-Bacteroides fragilis Bacteroides isolates and 129 fusobacteria from 28 U.S. centers. Antimicrob Agents Chemother. 1990;34:1546–50.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Roh KH, Kim S, Kim CK, Yum JH, Kim MS, Yong D, Jeong SH, Lee K, Kim JM, Chong Y. New cfiA variant and novel insertion sequence elements in carbapenem-resistant Bacteroides fragilis isolates from Korea. Diagn Microbiol Infect Dis. 2010;66:343–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Bizzini A, Greub G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin Microbiol Infect. 2010;16:1614–19.PubMedCrossRefGoogle Scholar
  112. 112.
    Treviño M, Areses P, Peñalver MD, Cortizo S, Pardo F, del Molino ML, García-Riestra C, Hernández M, Llovo J, Regueiro BJ. Susceptibility trends of Bacteroides fragilis group and characterisation of carbapenemase-producing strains by automated REP-PCR and MALDI TOF. Anaerobe. 2012;18:37–43.PubMedCrossRefGoogle Scholar
  113. 113.
    Nagy E, Becker S, Sóki J, Urbán E, Kostrzewa M. Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol. 2011;60:1584–90.PubMedCrossRefGoogle Scholar
  114. 114.
    Wybo I, De Bel A, Soetens O, Echahidi F, Vandoorslaer K, Van Cauwenbergh M, Piérard D. Differentiation of cfiA-negative and cfiA-positive Bacteroides fragilis isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49:1961–4.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Bandoh K, Watanabe K, Muto Y, Tanaka Y, Kato N, Ueno K. Conjugal transfer of imipenem resistance in Bacteroides fragilis. J Antibiot (Tokyo). 1992;45:542–7.CrossRefGoogle Scholar
  116. 116.
    Sóki J, Fodor E, Hecht DW, Edwards R, Rotimi VO, Kerekes I, Urbán E, Nagy E. Molecular characterization of imipenem-resistant, cifA-positive Bacteroides isolates from the USA, Hungary and Kuwait. J Med Microbiol. 2004;53:413–19.PubMedCrossRefGoogle Scholar
  117. 117.
    Appelbaum PC, Spangler SK, Pankuch GA, Philippon A, Jacobs MR, Shiman R, Goldstein EJ, Citron DM. Characterization of a beta-lactamase from Clostridium clostridioforme. J Antimicrob Chemother. 1994;33:33–40.PubMedCrossRefGoogle Scholar
  118. 118.
    Pumbwe L, Chang A, Smith RL, Wexler HM. Clinical significance of overexpression of multiple RND-family efflux pumps in Bacteroides fragilis isolates. J Antimicrob Chemother. 2006;58:543–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Snydman DR, Jacobus NV, McDermott LA, Ruthazer R, Goldstein EJ, Finegold SM, Harrell LJ, Hecht DW, Jenkins SG, Pierson C, Venezia R, Rihs J, Gorbach SL. National survey on the susceptibility of Bacteroides fragilis Group: report and analysis of trends for 1997–2000. Clin Infect Dis. 2002;35:S126–34.PubMedCrossRefGoogle Scholar
  120. 120.
    Piddock LJV, Wise R. Properties of the penicillin-binding proteins of four species of the genus Bacteroides. Antimicrob Agents Chemother. 1986;29:825–32.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Georgopapadakou NH, Smith SA, Sykes RB. Mode of action of azthreonam. Antimicrob Agents Chemother. 1982;21:950–6.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Yotsuji A, Mitsuyama J, Hori R, et al. Mechanism of action of cephalosporins and resistance caused by decreased affinity for penicillin-binding proteins in Bacteroides fragilis. Antimicrob Agents Chemother. 1988;32:1848–53.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Wexler HM, Halebian S. Alterations to the penicillin-binding proteins in the Bacteroides fragilis group: a mechanism for non-beta-lactamase mediated cefoxitin resistance. J Antimicrob Chemother. 1990;26:7–20.PubMedCrossRefGoogle Scholar
  124. 124.
    Piddock LJV, Wise R. Cefoxitin resistance in Bacteroides species: evidence indicating two mechanisms causing decreased susceptibility. J Antimicrob Chemother. 1987;19:161–70.PubMedCrossRefGoogle Scholar
  125. 125.
    Fang H, Edlund C, Nord CE, Hedberg M. Selection of cefoxitin-resistant Bacteroides thetaiotaomicron mutants and mechanisms involved in -lactam resistance. Clin Infect Dis. 2002;35:S4753.CrossRefGoogle Scholar
  126. 126.
    Cuchural Jr GJ, Malamy MH, Tally FP. Beta-Lactamase-mediated imipenem resistance in Bacteroides fragilis. Antimicrob Agents Chemother. 1986;30:645–8.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Hurlbut S, Cuchural GJ, Tally FP. Imipenem resistance in Bacteroides distasonis mediated by a novel beta-lactamase. Antimicrob Agents Chemother. 1990;34:117–20.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Rasmussen BA, Yang Y, Jacobus N, Bush K. Contribution of enzymatic properties, cell permeability, and enzyme expression to microbiological activities of beta-lactams in three Bacteroides fragilis isolates that harbor a metallo-beta-lactamase gene. Antimicrob Agents Chemother. 1994;38:2116–20.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Wexler HM. Outer-membrane pore-forming proteins in Gram-negative anaerobic bacteria. Clin Infect Dis. 2002;35:S6571.Google Scholar
  130. 130.
    Thadepalli H, Gorbach SL, Bartlett JG. Apparent failure of chloramphenicol in anaerobic infections. Obstet Gynecol Surg. 1978;35:334–5.CrossRefGoogle Scholar
  131. 131.
    Balbi HJ. Chloramphenicol: a review. Pediatr Rev. 2004;25:284–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Nau R, Sorgel F, Prange HW. Pharmacokinetic optimisation of the treatment of bacterial central nervous system infections. Clin Pharmacokinet. 1998;35:223–46.PubMedCrossRefGoogle Scholar
  133. 133.
    Chen SCA, Gottlieb T, Palmer JM, Morris G, Gilbert GL. Antimicrobial susceptibility of anaerobic bacteria in Australia. J Antimicrob Chemother. 1992;30:811–20.PubMedCrossRefGoogle Scholar
  134. 134.
    Bourgault A-M, Lamothe F, Hoban DJ, et al. Survey of Bacteroides fragilis group susceptibility patterns in Canada. Antimicrob Agents Chemother. 1992;36:343–7.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Cuchural Jr GJ, Snydman DR, McDermott L, et al. Antimicrobial susceptibility patterns of the Bacteroides fragilis group in the United States, 1989. Clin Ther. 1992;14:122–36.PubMedGoogle Scholar
  136. 136.
    Phillips I, King A, Nord CE, Hoffstedt B, European Study Group. Antibiotic sensitivity of the Bacteroides fragilis group in Europe. Eur J Clin Microbiol Infect Dis. 1992;11:292–304.PubMedCrossRefGoogle Scholar
  137. 137.
    Gibbs RS, Jones PM, Wilder CJ. Antibiotic therapy of endometritis following cesarean section. Treatment successes and failures. Obstet Gynecol. 1978;52:31–7.PubMedGoogle Scholar
  138. 138.
    Martínez-Suárez JV, Baquero F. Molecular and ecological aspects of antibiotic resistance in the Bacteroides fragilis group. Microbiologia. 1987;3:149–62.PubMedGoogle Scholar
  139. 139.
    Britz ML, Wilkinson RG. Chloramphenicol acetyltransferase of Bacteroides fragilis. Antimicrob Agents Chemother. 1978;14:105–11.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Martinez-Suarez JV, Baquero F, Reig M, Perez-Diaz JC. Transferable plasmid-linked chloramphenicol acetyltransferase conferring highlevel resistance in Bacteroides uniformis. Antimicrob Agents Chemother. 1985;28:113–17.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Goldstein EJC, Citron DM, Merriam CV. Linezolid activity compared to those of selected macrolides and other agents against aerobic and anaerobic pathogens isolated from soft tissue bite infections in humans. Antimicrob Agents Chemother. 1999;43:1469–74.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Williams JD, Maskell JP, Shain H, Chrysos G, Sefton AM, Fraser HY, Hardie JM. Comparative in-vitro activity of azithromycin, macrolides (erythromycin, clarithromycin and spiramycin) and streptogramin RP 59500 against oral organisms. J Antimicrob Chemother. 1992;30:27–37.PubMedCrossRefGoogle Scholar
  143. 143.
    Goldstein EJC, Lewis RP, Sutter VL, Finegold SM. Treatment of pleuropulmonary and soft-tissue infections with erythromycin. J Am Med Assoc. 1979;242:435–8.CrossRefGoogle Scholar
  144. 144.
    Roberts MC. Acquired tetracycline and/or macrolide-lincosamides-streptogramin resistance in anaerobes. Anaerobe. 2003;9:63–9.PubMedCrossRefGoogle Scholar
  145. 145.
    Feigin RD, Pickering LK, Anderson D, Keeney RE, Shackleford PG. Clindamycin treatment of osteomyelitis and septic arthritis in children. Pediatrics. 1975;55:213–23.PubMedGoogle Scholar
  146. 146.
    Klainer AS. Clindamycin. Med Clin North Am. 1987;71:1169–75.PubMedCrossRefGoogle Scholar
  147. 147.
    Paap CM, Nahata MC. Clinical pharmacokinetics of antibacterial drugs in neonates. Clin Pharmacokinet. 1990;19:280–318.PubMedCrossRefGoogle Scholar
  148. 148.
    Panzer JD, Brown DC, Epstein WL, Lipson RL, Mahaffey HW, Atkinson WH. Clindamycin levels in various body tissues and fluids. J Clin Pharmacol. 1972;12:259–62.Google Scholar
  149. 149.
    Whittle G, Shoemaker NB, Salyers AA. The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell Mol Life Sci. 2002;59:2044–54.PubMedCrossRefGoogle Scholar
  150. 150.
    Nord CE, Oprica C. Antibiotic resistance in Propionibacterium acnes, microbiological and clinical aspects. Anaerobe. 2006;12:207–10.PubMedCrossRefGoogle Scholar
  151. 151.
    Chow AW, Patten V, Guze LB. Susceptibility of anaerobic bacteria to metronidazole: relative resistance of non-spore forming Gram-positive bacilli. J Infect Dis. 1975;131:182–5.Google Scholar
  152. 152.
    Rustia M, Shubik P. Experimental induction of hematomas, mammary tumors and other tumors with metronidazole in noninbred Sas: WRC (WT)BR rats. J Natl Cancer Inst. 1979;63:863–8.PubMedCrossRefGoogle Scholar
  153. 153.
    Cohen SM, Ertürk E, Von Esch AM, Crovetti AJ, Bryan GT. Carcinogenicity of 5-nitrofurans, 5-nitroimidazoles, 4-nitrobenzenes, and related compounds. J Natl Cancer Inst. 1973;51:403–17.PubMedCrossRefGoogle Scholar
  154. 154.
    Beard CM, Noller KL, O’Fallon WM, Kurland LT, Dockerty MB. Lack of evidence for cancer due to use of metronidazole. N Engl J Med. 1979;301:519–22.PubMedCrossRefGoogle Scholar
  155. 155.
    Tally FP, Gorbach SL. Therapy of mixed anaerobic-aerobic infections. Lessons from studies of intra-abdominal sepsis. Am J Med. 1985;78:145–53.PubMedCrossRefGoogle Scholar
  156. 156.
    Brook I. Treatment of anaerobic infections in children with metronidazole. Dev Pharmacol. 1983;6:187–98.Google Scholar
  157. 157.
    Sørensen HT, Larsen H, Jensen ES, Thulstrup AM, Schønheyder HC, Nielsen GL, Czeizel A. Safety of metronidazole during pregnancy: a cohort study of risk of congenital abnormalities, preterm delivery and low birth weight in 124 women. J Antimicrob Chemother. 1999;44(6):854–6.PubMedCrossRefGoogle Scholar
  158. 158.
    Lofmark S, Edlund C, Nord CE. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin Infect Dis. 2010;50 Suppl 1:S16–23.PubMedCrossRefGoogle Scholar
  159. 159.
    Trinh S, Reysset G. Detection by PCR of the nim genes encoding 5-nitroimidazole resistance in Bacteroides spp. J Clin Microbiol. 1996;34:2078–84.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Lofmark S, Fang H, Hedberg M, Edlund C. Inducible metronidazole resistance and nim genes in clinical Bacteroides fragilis group isolates. Antimicrob Agents Chemother. 2005;49:1253–6.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Alauzet C, Mory F, Teyssier C, Hallage H, Carlier JP, Grollier G, Lozniewski A. Metronidazole resistance in Prevotella spp. and description of a new nim gene in Prevotella baroniae. Antimicrob Agents Chemother. 2010;54:60–4.PubMedCrossRefGoogle Scholar
  162. 162.
    Gal M, Brazier JS. Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole-resistant mutants. J Antimicrob Chemother. 2004;54:109–16.PubMedCrossRefGoogle Scholar
  163. 163.
    Schaumann R, Petzold S, Fille M, Rodloff AC. Inducible metronidazole resistance in nim-positive and nim-negative Bacteroides fragilis group strains after several passages metronidazole containing Columbia agar plates. Infection. 2005;33:368–72.PubMedCrossRefGoogle Scholar
  164. 164.
    Townsend ML, Pound MW, Drew RH. Tigecycline: a new glycylcycline antimicrobial. Int J Clin Pract. 2006;60:1662–7.PubMedCrossRefGoogle Scholar
  165. 165.
    Bartha NA, Sóki J, Urbán E, Nagy E. Investigation of the prevalence of tetQ, tetX and tetX1 genes in Bacteroides strains with elevated tigecycline minimum inhibitory concentrations. Int J Antimicrob Agents. 2011;38:522–5.PubMedCrossRefGoogle Scholar
  166. 166.
    Fletcher HM, Macrina FL. Molecular survey of clindamycin and tetracycline resistance determinants in Bacteroides species. Antimicrob Agents Chemother. 1991;35:2415–18.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Nikolich MP, Shoemaker NB, Salyers AA. A Bacteroides tetracycline resistance gene represents a new class of ribosome protection tetracycline resistance. Antimicrob Agents Chemother. 1992;36:1005–12.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Lepine G, Lacroix J-M, Walker CB, Progulske-Fox A. Sequencing of a tet(Q) gene isolated from Bacteroides fragilis 1126. Antimicrob Agents Chemother. 1993;37:2037–41.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    de Barbeyrac B, Dutilh B, Quentin C, Renaudin H, Bebear C. Susceptibility of Bacteroides ureolyticus to antimicrobial agents and identification of a tetracycline resistance determinant related to tetM. J Antimicrob Chemother. 1991;27:721–31.PubMedCrossRefGoogle Scholar
  170. 170.
    Sloan J, McMurry LM, Lyras D, Levy SB, Rood JI. The Clostridium perfringens TetP determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline-resistance determinants. Mol Microbiol. 1994;11:403–15.PubMedCrossRefGoogle Scholar
  171. 171.
    Speer BS, Bedzyk L, Salyers AA. Evidence that a novel tetracycline resistance gene found on two Bacteroides transposons encodes an NADP-requiring oxidoreductase. J Bacteriol. 1991;173:176–83.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Speer BS, Salyers AA. Novel aerobic tetracycline resistance gene that chemicallymodifies tetracycline. J Bacteriol. 1989;171:148–53.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Speer BS, Salyers AA. Characterization of a novel tetracycline resistance that functions only in aerobically grown Escherichia coli. J Bacteriol. 1988;170:1423–9.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Park BH, Hendricks M, Malamy MH, Tally FP, Levy SB. Cryptic tetracycline resistance determinant (class F) from Bacteroides fragilis mediates resistance in Escherichia coli by actively reducing tetracycline accumulation. Antimicrob Agents Chemother. 1987;31:1739–43.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Speer BS, Salyers AA. A tetracycline efflux gene on Bacteroides transposon Tn4400 does not contribute to tetracycline resistance. J Bacteriol. 1990;172:292–8.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Stevens AM, Shoemaker NB, Li L-Y, Salyers AA. Tetracycline regulation of genes on Bacteroides conjugative transposons. J Bacteriol. 1993;175:6134–41.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Privitera G, Dublanchet A, Sebald M. Transfer of multiple antibiotic resistance between subspecies of Bacteroides fragilis. J Infect Dis. 1979;139:97–101.PubMedCrossRefGoogle Scholar
  178. 178.
    Privitera G, Sebald M, Fayolle F. Common regulatory mechanism of expression and conjugative ability of a tetracycline resistance plasmid in Bacteroides fragilis. Nature. 1979;278:657–9.PubMedCrossRefGoogle Scholar
  179. 179.
    Bedzyk LA, Shoemaker NB, Young KE, Salyers AA. Insertion and excision of Bacteroides conjugative chromosomal elements. J Bacteriol. 1992;174:166–72.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Stevens AM, Sanders JM, Shoemaker NB, Salyers AA. Genes involved in production of plasmidlike forms by a Bacteroides conjugal chromosomal element share amino acid homology with two-component regulatory systems. J Bacteriol. 1992;174:2935–42.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Privitera G, Fayolle F, Sebald M. Resistance to tetracycline, erythromycin, and clindamycin in the Bacteroides fragilis group: inducible versus constitutive tetracycline resistance. Antimicrob Agents Chemother. 1981;20:314–20.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Shoemaker NB, Wang G-R, Stevens AM, Salyers AA. Excision, transfer, and integration of NBUI, a mobilizable site-selective insertion element. J Bacteriol. 1993;175:6578–87.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Li L-Y, Shoemaker NB, Salyers AA. Characterization of the mobilization region of a Bacteroides insertion element (NBU1) that is excised and transferred by Bacteroides conjugative transposons. J Bacteriol. 1993;175:6588–98.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Smith CJ, Parker AC. Identification of a circular intermediate in the transfer and transposition of Tn4555, a mobilizable transposon from Bacteroides spp. J Bacteriol. 1993;175:2682–91.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Franke AE, Clewell DB. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J Bacteriol. 1981;145:494–502.PubMedPubMedCentralGoogle Scholar
  186. 186.
    Rashtchian A, Dubes GR, Booth SJ. Tetracycline-inducible transfer of tetracycline resistance in Bacteroides fragilis in the absence of detectable plasmid DNA. J Bacteriol. 1982;150:141–7.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Smith CJ, Welch RA, Macrina FL. Two independent conjugal transfer systems operating in Bacteroides fragilis V479-1. J Bacteriol. 1982;151:281–7.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Shoemaker NB, Barber BD, Salyers AA. Cloning and characterization of a Bacteroides conjugal tetracycline-erythromycin resistance element by using a shuttle cosmid vector. J Bacteriol. 1989;171:1294–302.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Ellis-Grosse EJ, Babinchak T, Dartois N, Rose G, Loh E. The efficacy and safety of tigecycline in the treatment of skin and skin–structure infections: results of 2 double-blind phase 3 comparison studies with vancomycin-aztreonam. Clin Infect Dis. 2005;41:S341–53.PubMedCrossRefGoogle Scholar
  190. 190.
    Babinchak T, Ellis-Grosse E, Dartois N, Rose GM, Loh E. The efficacy and safety of tigecycline for the treatment of complicated intra-abdominal infections: analysis of pooled clinical trial data. Clin Infect Dis. 2005;41:S354–67.PubMedCrossRefGoogle Scholar
  191. 191.
    Jacobus NV, McDermott LA, Ruthazer R, Snydman DR. In vitro activities of tigecycline against the Bacteroides fragilis group. Antimicrob Agents Chemother. 2004;48:1034–6.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Appelbaum PC. Quinolone activity against anaerobes. Drugs. 1999;58:60–4.PubMedCrossRefGoogle Scholar
  193. 193.
    Stein GE, Goldstein EJ. Fluoroquinolones and anaerobes. Clin Infect Dis. 2006;42:1598–607.PubMedCrossRefGoogle Scholar
  194. 194.
    Goldstein EJC, Citron DM, Warren YA, Tyrrell KL, Merriam CV, Fernandez H. In vitro activity of moxifloxacin against 923 anaerobes isolated from human intra-abdominal infections. Antimicrob Agents Chemother. 2006;50:148–55.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Golan Y, McDermott LA, Jacobus NV, Goldstein EJ, Finegold S, Harrell LJ, Hecht DW, Jenkins SG, Pierson C, Venezia R, Rihs J, Iannini P, Gorbach SL, Snydman DR. Emergence of fluoroquinolone resistance among Bacteroides species. J Antimicrob Chemother. 2003;52:208–13.PubMedCrossRefGoogle Scholar
  196. 196.
    Wexler HM, Molitoris E, Molitoris D, Finegold SM. In vitro activity of moxifloxacin against 179 strains of anaerobic bacteria found in pulmonary infections. Anaerobe. 2000;6:227–31.CrossRefGoogle Scholar
  197. 197.
    Conrads G, Citron DM, Goldstein EJC. Genetic determinant of intrinsic quinolone resistance in Fusobacterium canifelinum. Antimicrob Agents Chemother. 2005;49:434–7.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Bryan LE, Kowand SK, Van Den Elzen HM. Mechanism of aminoglycoside antibiotic resistance in anaerobic bacteria: Clostridium perfringens and Bacteroides fragilis. Antimicrob Agents Chemother. 1979;15:7–13.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Ricci V, Piddock L. Accumulation of garenoxacin by Bacteroides fragilis compared with that of five fluoroquinolones. J Antimicrob Chemother. 2003;52:6059.CrossRefGoogle Scholar
  200. 200.
    Bryan LE, Van Den Elzen HM. Streptomycin accumulation in susceptible and resistant strains of Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1976;9:928–38.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Tyrrell KL, Citron DM, Warren YA, Goldstein EJC. In-vitro activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, against 377 strains of anaerobic bacteria and 34 strains of Corynebacterium species. Antimicrob Agents Chemother. 2012;56:2194–7.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Finch RG. Antibacterial activity of quinupristin/dalfopristin. Rationale Clin Use Drugs. 1996;51:31–7.Google Scholar
  203. 203.
    Hecht DW, Vedantam G. Anaerobe resistance among anaerobes: what now? Anaerobe. 1999;5:421–9.CrossRefGoogle Scholar
  204. 204.
    Smith CJ, Tribble GD, Bayley DP. Genetic elements of Bacteroides species: a moving story. Plasmid. 1998;40:12–29.PubMedCrossRefGoogle Scholar
  205. 205.
    Whittle G, Hund BD, Shoemaker NB, Salyers AA. Characterization of the 13-kilobase ermF region of the Bacteroides conjugative transposon CTnDOT. Appl Environ Microbiol. 2001;67:3488–95.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Vedantam G, Hecht DW. Isolation and characterization of BTF-37: chromosomal DNA captured from Bacteroides fragilis that confers self-transferability and expresses a pilus-like structure in Bacteroides spp. and Escherichia coli. J Bacteriol. 2002;184:728–38.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Bonheyo GT, Hund BD, Shoemaker NB, Salyers AA. Transfer region of a Bacteroides conjugative transposon contains regulatory as well as structural genes. Plasmid. 2001;46:202–9.PubMedCrossRefGoogle Scholar
  208. 208.
    Salyers AA, Shoemaker NB, Li LY, Stevens AM. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev. 1995;59:579–90.PubMedPubMedCentralGoogle Scholar
  209. 209.
    Valentine PJ, Shoemaker NB, Salyers AA. Mobilization of Bacteroides plasmids by Bacteroides conjugal elements. J Bacteriol. 1988;170:1319–24.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Shoemaker NB, Vlamakis H, Hayes K, Salyers AA. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol. 2001;67:561–8.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Wang Y, Wang GR, Shelby A, Shoemaker NB, Salyers AA. A newly discovered Bacteroides conjugative transposon, CTnGERM1, contains genes also found in Gram-positive bacteria. Appl Environ Microbiol. 2003;69:4595–603.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Nikolich MP, Hong G, Shoemaker NB, Salyers AA. Evidence for natural horizontal transfer of tetQ between bacteria that normally colonize humans and bacteria that normally colonize livestock. Appl Environ Microbiol. 1994;60:3255–60.PubMedPubMedCentralGoogle Scholar
  213. 213.
    Brook I. The role of beta-lactamase-producing bacteria in the persistence of streptococcal tonsillar infection. Rev Inf Dis. 1984;6:601–7.CrossRefGoogle Scholar
  214. 214.
    Brook I. Microbiology of abscesses of head and neck in children. Ann Otol Rhin Laryngol. 1987;96:429–33.CrossRefGoogle Scholar
  215. 215.
    Brook I, Finegold SM. Aerobic and anaerobic bacteriology of cutaneous abscesses in children. Pediatrics. 1981;67:891–5.PubMedGoogle Scholar
  216. 216.
    Brook I, Martin WJ. Aerobic and anaerobic bacteriology of perirectal abscess in children. Pediatrics. 1980;66:282–4.PubMedGoogle Scholar
  217. 217.
    Brook I, Anderson KD, Controni G, Rodriguez WJ. Aerobic and anaerobic bacteriology of pilonidal cyst abscess in children. Am J Dis Child. 1980;134:629–30.CrossRefGoogle Scholar
  218. 218.
    Brook I. Aerobic and anaerobic bacteriology of cervical adenitis in children. Clin Pediatr. 1980;19:693–6.CrossRefGoogle Scholar
  219. 219.
    Brook I, Randolph J. Aerobic and anaerobic flora of burns in children. J Trauma. 1981;21:313–18.PubMedCrossRefGoogle Scholar
  220. 220.
    Brook I. Bacteriology of paronychia in children. Am J Surg. 1981;141:703–5.PubMedCrossRefGoogle Scholar
  221. 221.
    Brook I. Anaerobic and aerobic bacteriology of decubitus ulcers in children. Am Surg. 1980;6:624–6.Google Scholar
  222. 222.
    Brook I. Microbiology of human and animal bites in children. Pediatr Infect Dis. 1987;6:29–32.CrossRefGoogle Scholar
  223. 223.
    Brook I. Aerobic and anaerobic bacterial isolates of acute conjunctivitis in children: a prospective study. Arch Ophthalmol. 1980;98:833–5.PubMedCrossRefGoogle Scholar
  224. 224.
    Brook I, Finegold SM. Bacteriology of chronic otitis media. J Am Med Assoc. 1979;241:487–8.CrossRefGoogle Scholar
  225. 225.
    Brook I. Microbiology of chronic otitis media with perforation in children. Am J Dis Child. 1980;130:564–6.CrossRefGoogle Scholar
  226. 226.
    Brook I. Prevalence of beta-lactamase-producing bacteria in chronic suppurative otitis media. Am J Dis Child. 1985;139:280–4.PubMedGoogle Scholar
  227. 227.
    Brook I. Bacteriology of neonatal omphalitis. J Infect. 1982;5:127–31.CrossRefGoogle Scholar
  228. 228.
    Brook I, Yocum P, Shah K, Feldman B, Epstein S. The aerobic and anaerobic bacteriology of serous otitis media. Am J Otolaryngol. 1983;4:389–92.PubMedCrossRefGoogle Scholar
  229. 229.
    Brook I. Aerobic and anaerobic bacteriology of cholesteatoma. Laryngoscope. 1981;91:250–3.PubMedGoogle Scholar
  230. 230.
    Brook I. Aerobic and anaerobic bacteriology of chronic mastoiditis in children. Am J Dis Child. 1981;135:478–9.PubMedGoogle Scholar
  231. 231.
    Brook I. Bacteriological features of chronic sinusitis in children. J Am Med Assoc. 1981;246:567–9.CrossRefGoogle Scholar
  232. 232.
    Brook I. Aerobic and anaerobic bacteriology of adenoids in children: comparison between patients with chronic adenotonsillitis and adenoid hypertrophy. Laryngoscope. 1981;91:377–82.PubMedGoogle Scholar
  233. 233.
    Brook I, Yocum P, Friedman EM. Aerobic and anaerobic flora recovered from tonsils of children with recurrent tonsillitis. Ann Otol Rhinol Laryngol. 1981;90:261–3.PubMedCrossRefGoogle Scholar
  234. 234.
    Brook I, Yocum P. Bacteriology of chronic tonsillitis in young adults. Arch Otolaryngol. 1984;110:803–5.PubMedCrossRefGoogle Scholar
  235. 235.
    Brook I. Aerobic and anaerobic bacteriology of peritonsillar abscess in children. Acta Pediatr Scand. 1981;70:831–5.CrossRefGoogle Scholar
  236. 236.
    Brook I. Microbiology of retropharyngeal abscesses in children. Am J Dis Child. 1987;141:202–3.PubMedGoogle Scholar
  237. 237.
    Brook I, Finegold SM. Bacteriology of aspiration pneumonia in children. Pediatrics. 1980;65:1115–20.PubMedGoogle Scholar
  238. 238.
    Brook I, Finegold SM. The bacteriology and therapy of lung abscess in children. J Pediatr. 1979;94:10–4.PubMedCrossRefGoogle Scholar
  239. 239.
    Brook I. Bacterial colonization, trachitis, tracheobronchitis and pneumonia following tracheostomy and long-term intubation in pediatric patients. Chest. 1979;70:420–4.CrossRefGoogle Scholar
  240. 240.
    Brook I, Fink R. Transtracheal aspiration in pulmonary infection in children with cystic fibrosis. Eur J Respir Dis. 1983;64:51–7.PubMedGoogle Scholar
  241. 241.
    Brook I. Presence of beta-lactamase-producing bacteria and beta-lactamase activity in abscesses. Am J Clin Pathol. 1986;86:97–101.PubMedCrossRefGoogle Scholar
  242. 242.
    Brook I. Bacterial studies of peritoneal cavity and postoperative surgical wound drainage following perforated appendix in children. Ann Surg. 1980;192:208–12.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Brook I, Altman RP. The significance of anaerobic bacteria in biliary tract infections following hepatic porto-enterostomy for biliary atresia. Surgery. 1984;95:281–3.PubMedGoogle Scholar
  244. 244.
    Brook I, Frazier EH, Thomas RL. Aerobic and anaerobic microbiologic factors and recovery of beta-lactamase producing bacteria from obstetric and gynecologic infection. Surg Gynecol Obstet. 1991;172:138–44.PubMedGoogle Scholar
  245. 245.
    Brook I, Grimm S, Kielich RB. Bacteriology of acute periapical abscess in children. J Endod. 1981;7:378–80.PubMedCrossRefGoogle Scholar
  246. 246.
    Brook I. Aerobic and anaerobic bacteriology of intracranial abscesses. Pediatr Neurol. 1992;8:210–14.PubMedCrossRefGoogle Scholar
  247. 247.
    Brook I. Anaerobic osteomyelitis in children. Pediatr Infect Dis. 1986;5:550–6.PubMedCrossRefGoogle Scholar
  248. 248.
    Brook I. Recovery of anaerobic bacteria from clinical specimens in 12 years at two military hospitals. J Clin Microbiol. 1988;26:1181–8.PubMedPubMedCentralGoogle Scholar
  249. 249.
    Eschenbach DA. A review of the role of beta-lactamase producing bacteria in obstetric-gynecologic infection. Am J Obstet Gynecolog. 1987;156:495–503.CrossRefGoogle Scholar
  250. 250.
    Martens MG, Faro S, Maccato M, Hammill HA, Riddle G. Prevalence of beta-lactamase enzyme production in bacteria isolated from women with postpartum endometritis. J Reprod Med. 1993;38:795–8.PubMedGoogle Scholar
  251. 251.
    Quentin R, Lansac J. Pelvic inflammatory disease: medical treatment. Eur J Obstet Gynecol Reprod Biol. 2000;92:189–92.PubMedCrossRefGoogle Scholar
  252. 252.
    Brook I. Anaerobic bacterial bacteremia: 12-year experience in two military hospitals. J Infect Dis. 1989;160:1071–5.PubMedCrossRefGoogle Scholar
  253. 253.
    Brook I. Infections caused by beta-lactamase-producing Fusobacterium spp. in children. Pediatr Infect Dis J. 1993;12:532–3.PubMedCrossRefGoogle Scholar
  254. 254.
    Kononen E, Kanervo A, Salminen K, Jousimies-Somer H. Beta-lactamase production and antimicrobial susceptibility of oral heterogenous Fusobacterium nucleatum populations in young children. Antimicrob Agents Chemother. 1999;43:1270–3.PubMedPubMedCentralGoogle Scholar
  255. 255.
    Goldstein EJ, Summanen PH, Citron DM, Rosove MH, Finegold SM. Fatal sepsis due to a beta-lactamase-producing strain of Fusobacterium nucleatum subspecies polymorphum. Clin Infect Dis. 1995;20:797–800.PubMedCrossRefGoogle Scholar
  256. 256.
    Brook I, Pazzaglia G, Coolbaugh JC, Walker RI. In vivo protection of group A beta-hemolytic streptococci by beta-lactamase producing Bacteroides species. J Antimicrob Chemother. 1983;12:599–606.PubMedCrossRefGoogle Scholar
  257. 257.
    Brook I, Pazzaglia G, Coolbaugh JC, Walker RI. In vivo protection of penicillin susceptible Bacteroides melaninogenicus from penicillin by facultative bacteria which produce beta-lactamase. Can J Microbiol. 1984;30:98–104.PubMedCrossRefGoogle Scholar
  258. 258.
    Simon HM, Sakai W. Staphylococcal anatagosim to penicillin group therapy of hemolytic streptococcal pharyngeal infection: effect of oxacillin. Pediatrics. 1963;31:463–9.PubMedGoogle Scholar
  259. 259.
    Scheifele DW, Fussell SJ. Frequency of ampicillin resistant Haemophilus parainfluenzae in children. J Infect Dis. 1981;143:495–8.PubMedCrossRefGoogle Scholar
  260. 260.
    Brook I, Yocum P. In vitro protection of group A beta-hemolytic streptococci from penicillin and cephalothin by Bacteroides fragilis. Chemotherapy. 1983;29:18–23.PubMedCrossRefGoogle Scholar
  261. 261.
    Hackman AS, Wilkins TD. In vivo protection of Fusobacterium necrophorum from penicillin by Bacteroides fragilis. Antimicrob Agents Chemother. 1975;7:698–703.PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    O’Keefe JP, Tally FP, Barza M, Gorbach SL. Inactivation of penicillin-G during experimental infection with Bacteroides fragilis. J Infect Dis. 1978;137:437–42.PubMedCrossRefGoogle Scholar
  263. 263.
    Heimdahl A, Von Konow L, Nord CE. Isolations of beta-lactamase-producing Bacteroides strains associated with clinical failures with penicillin treatment of human orofacial infections. Arch Oral Biol. 1980;25:288–92.CrossRefGoogle Scholar
  264. 264.
    De Louvois J, Hurley R. Inactivation of penicillin by purulent exudates. Br Med J. 1977;2:998–1000.CrossRefGoogle Scholar
  265. 265.
    Masuda G, Tomioka S. Possible beta-lactamase activities detectable in infective clinical specimens. J Antibiot (Tokyo). 1977;30:1093–7.CrossRefGoogle Scholar
  266. 266.
    Bryant RE, Rashad AL, Mazza JA, Hammond D. Beta-lactamase activity in human plus. J Infect Dis. 1980;142:594–601.PubMedCrossRefGoogle Scholar
  267. 267.
    Brook I. Quantitative cultures and beta-lactamase activity in chronic suppurative otitis media. Ann Otol Rhinol Laryngol. 1989;98:293–7.PubMedCrossRefGoogle Scholar
  268. 268.
    Brook I, Yocum P. Bacteriology and beta-lactamase activity in ear aspirates of acute otitis media that failed amoxicillin therapy. Pediatr Infect Dis J. 1995;14:805–8.PubMedCrossRefGoogle Scholar
  269. 269.
    Brook I, Yocum P, Frazier EH. Bacteriology and beta-lactamase activity in acute and chronic maxillary sinusitis. Arch Otolaryngol Head Neck Surg. 1996;122:418–22.PubMedCrossRefGoogle Scholar
  270. 270.
    Brook I, Gober AE. Monthly changes in the rate of recovery of penicillin-resistant organisms from children. Pediatr Infect Dis J. 1997;16:255–7.PubMedCrossRefGoogle Scholar
  271. 271.
    Brook I. Beta-lactamase-producing bacteria recovered after clinical failures with various penicillin therapy. Arch Otolaryngol. 1984;110:228–31.PubMedCrossRefGoogle Scholar
  272. 272.
    Ross J. Pelvic inflammatory disease. Br Med J. 2001;322:658–9.CrossRefGoogle Scholar
  273. 273.
    Smith TD, Huskins WC, Kim KS, Kaplan EL. Efficacy of beta-lactamase-resistant penicillin and influence of penicillin tolerance in eradicating streptococci from the pharynx after failure of penicillin therapy for group A streptococcal pharyngitis. J Pediatr. 1987;110:777–82.PubMedCrossRefGoogle Scholar
  274. 274.
    Kaplan EL. Johnson DR Unexplained reduced microbiological efficacy of intramuscular benzathine penicillin G and of oral penicillin V in eradication of group A streptococci from children with acute pharyngitis. Pediatrics. 2001;108:1180–6.PubMedCrossRefGoogle Scholar
  275. 275.
    Campos J, Roman F, Perez-Vazquez M, Oteo J, Aracil B, Cercenado E. Spanish Study Group for Haemophilus influenzae Type E. Infections due to Haemophilus influenzae serotype E: microbiological, clinical, and epidemiological features. Clin Infect Dis. 2003;37:841–5.PubMedCrossRefGoogle Scholar
  276. 276.
    Jacobs MR. Worldwide trends in antimicrobial resistance among common respiratory tract pathogens in children. Pediatr Infect Dis J. 2003;22 Suppl 8:S109–19.PubMedCrossRefGoogle Scholar
  277. 277.
    Kovatch AL, Wald ER, Michaels RH. Beta-lactamase-producing Branhamella catarrhalis causing otitis media in children. J Pediatr. 1983;102:260–3.CrossRefGoogle Scholar
  278. 278.
    Reilly S, Timmis P, Beeden AG, Willis AT. Possible role of the anaerobe in tonsillitis. J Clin Pathol. 1981;34:542–7.PubMedPubMedCentralCrossRefGoogle Scholar
  279. 279.
    Chagollan JR, Macias JR, Gil JS. Flora indigena de las amigalas. Invest Med Int. 1984;11:36–43.Google Scholar
  280. 280.
    Tuner K, Nord CE. Beta lactamase-producing microorganisms in recurrent tonsillitis. Scand J Infect Dis Suppl. 1983;39:83–5.PubMedGoogle Scholar
  281. 281.
    Brook I, Yocum P. Quantitative measurement of beta-lactamase levels in tonsils of children with recurrent tonsillitis. Acta Otolaryngol Scand. 1984;98:456–9.Google Scholar
  282. 282.
    Tuner K, Nord CE. Emergence of beta-lactamase producing microorganisms in the tonsils during penicillin treatment. Eur J Clin Microb. 1986;5:399–404.CrossRefGoogle Scholar
  283. 283.
    Brook I, Gober AE. Emergence of beta-lactamase-producing aerobic and anaerobic bacteria in the oropharynx of children following penicillin chemotherapy. Clin Pediatr. 1984;23:338–41.CrossRefGoogle Scholar
  284. 284.
    Brook I. Emergence and persistence of β-lactamase-producing bacteria in the oropharynx following penicillin treatment. Arch Otolaryngol Head Neck Surg. 1988;114:667–70.PubMedCrossRefGoogle Scholar
  285. 285.
    Brook I, Gober AE. Prophylaxis with amoxicillin or sulfisoxazole for otitis media: effect on the recovery of penicillin-resistant bacteria from children. Clin Infect Dis. 1996;22:143–5.PubMedCrossRefGoogle Scholar
  286. 286.
    Brook I. Role of beta-lactamase-producing bacteria in penicillin failure to eradicate group A streptococci. Pediatr Infect Dis. 1985;4:491–5.PubMedCrossRefGoogle Scholar
  287. 287.
    Brook I, Gober AE. Failure to eradicate streptococci and beta-lactamase producing bacteria. Acta Paediatr. 2008;96:193–5.CrossRefGoogle Scholar
  288. 288.
    Roos K, Grahn E, Holn SE. Evaluation of beta-lactamase activity and microbial interference in treatment failures of acute streptococcal tonsillitis. Scand J Infect Dis. 1986;18:313–18.PubMedCrossRefGoogle Scholar
  289. 289.
    Breese BB, Disney FA, Talpey WB. Beta-hemolytic streptococcal illness: comparison of lincomycin, ampicillin and potassium penicillin-G in treatment. Am J Dis Child. 1966;112:21–7.PubMedCrossRefGoogle Scholar
  290. 290.
    Breese BB, Disney FA, Talpey WB, et al. Beta-hemolytic streptococcal infection: Comparison of penicillin and lincomycin in the treatment of recurrent infections or the carrier state. Am J Dis Child. 1969;117:147–52.PubMedCrossRefGoogle Scholar
  291. 291.
    Randolph MF, DeHaan RM. A comparison of lincomycin and penicillin in the treatment of group A streptococcal infections: Speculation on the “L” forms as a mechanism of recurrence. Del Med J. 1969;41:51–62.PubMedGoogle Scholar
  292. 292.
    Howie VM, Plousard JH. Treatment of group A streptococcal pharyngitis in children: Comparison of lincomycin and penicillin G given orally and benzathine penicillin G given intramuscularly. Am J Dis Child. 1971;121:477.PubMedCrossRefGoogle Scholar
  293. 293.
    Randolph MF, Redys JJ, Hibbard EW. Streptococcal pharyngitis III. Streptococcal recurrence rates following therapy with penicillin or with clindamycin (7-chlorlincomycin). Del Med J. 1970;42:87–92.PubMedGoogle Scholar
  294. 294.
    Stillerman M, Isenberg HD, Facklan RR. Streptococcal pharyngitis therapy: comparison of clindamycin palmitate and potassium phenoxymethyl penicillin. Antimicrob Agents Chemother. 1973;4:516–20.CrossRefGoogle Scholar
  295. 295.
    Massell BF. Prophylaxis of streptococcal infection and rheumatic fever: a comparison of orally administered clindamycin and penicillin. J Am Med Assoc. 1979;241:1589–94.CrossRefGoogle Scholar
  296. 296.
    Brook I, Leyva F. The treatment of the carrier state of group A beta-hemolytic streptococci with clindamycin. Chemotherapy. 1981;27:360–7.PubMedCrossRefGoogle Scholar
  297. 297.
    Brook I, Hirokawa R. Treatment of patients with recurrent tonsillitis due to group A beta-hemolytic streptococci: a prospective randomized study comparing penicillin, erythromycin and clindamycin. Clin Pediatr. 1985;24:331–6.CrossRefGoogle Scholar
  298. 298.
    Orrling A, Stjernquist-Desatnik A, Schalen C. Clindamycin in recurrent group A streptococcal pharyngotonsillitis—an alternative to tonsillectomy? Acta Otolaryngol. 1997;117:618–22.PubMedCrossRefGoogle Scholar
  299. 299.
    Chaudhary S, Bilinsky SA, Hennessy JL, Soler SM, Wallace SE, Schacht CM, Bisno AL. Penicillin V and rifampin for the treatment of group A streptococcal pharyngitis: a randomized trial of 10 days penicillin vs 10 days penicillin with rifampin during the final 4 days of therapy. J Pediatr. 1985;106:481–6.PubMedCrossRefGoogle Scholar
  300. 300.
    Tanz RR, Shulman ST, Barthel MJ, Willert C, Yogev R. Penicillin plus rifampin eradicate pharayngeal carrier of group A streptococci. J Pediatr. 1985;106:876–80.PubMedCrossRefGoogle Scholar
  301. 301.
    Tanz RR, Poncher JR, Corydon KE, Kabat K, Yogev R, Shulman ST. Clindamycin treatment of chronic pharyngeal carriage of group A streptococci. J Pediatr. 1991;119:123–8.PubMedCrossRefGoogle Scholar
  302. 302.
    Brook I. Treatment of patients with acute recurrent tonsillitis due to group A beta-haemolytic streptococci: a prospective randomized study comparing penicillin and amoxycillin/clavulanate potassium. J Antimicrob Chemother. 1989;24:227–33.PubMedCrossRefGoogle Scholar
  303. 303.
    Brook I, Shah K, Jackson W. Microbiology of healthy and diseased adenoids. Laryngoscope. 2000;110:994–9.PubMedCrossRefGoogle Scholar
  304. 304.
    Brook I, Shah K. Effect of amoxycillin with or without clavulanate on adenoid bacterial flora. J Antimicrob Chemother. 2001;48:269–73.PubMedCrossRefGoogle Scholar
  305. 305.
    Brook I, Shah K. Effect of amoxicillin or clindamycin on the adenoids bacterial flora. Otolaryngol Head Neck Surg. 2003;129:5–10.PubMedCrossRefGoogle Scholar
  306. 306.
    Brook I, Gober AE. Effect of amoxicillin and co-amoxiclav on the aerobic and anaerobic nasopharyngeal flora. J Antimicrob Chemother. 2002;49:689–92.PubMedCrossRefGoogle Scholar
  307. 307.
    Levison ME, Mangura CT, Lorber B, Abrutyn E, Pesanti EL, Levy RS, MacGregor RR, Schwartz AR. Clindamycin compared with penicillin for the treatment of anaerobic lung abscess. Ann Int Med. 1983;98:466–71.PubMedCrossRefGoogle Scholar
  308. 308.
    Gudiol F, Manresa F, Pallares R, Dorca J, Rufi G, Boada J, Ariza X, Casanova A, Viladrich PF. Clindamycin vs penicillin for anaerobic lung infections. High rate of penicillin failures associated with penicillin-resistant Bacteroides melaninogenicus. Arch Intern Med. 1990;150:2525–9.PubMedCrossRefGoogle Scholar
  309. 309.
    Brook I. Treatment of aspiration or tracheostomy-associated pneumonia in neurologically impaired children: effect of antimicrobials effective against anaerobic bacteria. Int J Pediatr Otorhinolaryngol. 1996;35:171–7.PubMedCrossRefGoogle Scholar
  310. 310.
    Mazuski JE, Solomkin JS. Intra-abdominal infections. Surg Clin North Am. 2009;89:421–37.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Georgetown University School of MedicineWashington, DCUSA

Personalised recommendations