Safe Navigation of Mobile Robots Using a Hybrid Navigation Framework with a Fuzzy Logic Decision Process

  • Elvis RuizEmail author
  • Raul AcuñaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 619)


Autonomous navigation in dynamic environments is one of the most important problems in robotics. The different solutions to achieve this goal may be categorized into two big groups, deliberative methods and reactive methods. Deliberative methods require precise map knowledge, are computationally intensive, but they usually assure a path to the goal, on the other hand reactive methods are fast, dynamic but also subject to local minima among other problems. In this paper we propose a hybrid reactive-deliberative framework for mobile robots navigation which integrates the advantages of a high level deliberative planner with a reactive low-level control. The reactive layer of this new system uses the new map information in an asynchronous way allowing a much more dynamic response of the system to environment changes. For the merging of the reactive and deliberative behaviours a new Fuzzy Logic layer is proposed which defines the contribution of each navigation layer into the final movement of the robotic platform in real-time. The proposed framework was tested in a simulated Amigobot robot with a simulated Kinect sensor using the robotic simulation platform V-REP and the programming of the different layers was implemented in ROS.


Navigation Path-planning Mobile robots Control ROS Kinect Fuzzy 


  1. 1.
    Zhu, Y., Zhang, T., Song, J., Li, X.: A hybrid navigation strategy for multiple mobile robots. Robot. Comput.-Integr. Manuf. 29(4), 129–141 (2013).
  2. 2.
    Zhu, Y., Zhang, T., Song, J., Li, X.: A new hybrid navigation algorithm for mobile robots in environments with incomplete knowledge. Knowl.-Based Syst. 27, 302–313 (2012).
  3. 3.
    Laugier, C., Vasquez, D., Yguel, M., Fraichard, T., Aycard, O.: Geometric and bayesian models for safe navigation in dynamic environments. Intell. Serv. Robot. 1(1), 51–72 (2008).
  4. 4.
    Ang, M.: Hybrid of global path planning and local navigation implemented on a mobile robot in indoor environment. In: Proceedings of the IEEE Internatinal Symposium on Intelligent Control, pp. 821–826. IEEE (2002).,
  5. 5.
    Maaref, H., Barret, C.: Sensor-based navigation of a mobile robot in an indoor environment. Robot. Auton. Syst. 38(1), 1–18 (2002).,
  6. 6.
    Zhao, M.-Y., Wang, H.-G., Fang, L.-J.: Hybrid navigation for a climbing robot by fuzzy neural network and trajectory planning. In: 2005 International Conference on Machine Learning and Cybernetics, vol. 2, pp. 1069–1075. IEEE (2005).
  7. 7.
    Acuña, R., Terrones, A., Certad-H, N., Fermín-León, L.: Dynamic potential field generation using movement prediction. In: Proceedings of the 15th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, vol. 23, p. 26. World Scientific (2012)Google Scholar
  8. 8.
    Vazquez-Martin, R., Perez, E., Urdiales, C., del, Toro, J., Sandoval, F.: Hybrid navigation guidance for intelligent mobiles. In: 2006 IEEE 63rd Vehicular Technology Conference, vol. 6, pp. 2992–2996. IEEE (2006).,
  9. 9.
    Qu, H., Yang, S.X., Willms, A.R., Yi, Z.: Real-time robot path planning based on a modified pulse-coupled neural network model. IEEE Trans. Neural Netw. Publ. IEEE Neural Netw. Counc. 20(11), 1724–39 (2009).,
  10. 10.
    Huang, H., Tsai, C.: Global path planning for autonomous robot navigation using hybrid metaheuristic GA-PSO algorithm. 2011 SICE Annual Conference (SICE), pp. 1338–1343 (2011).
  11. 11.
    Zickler, S.: Physics-based robot motion planning in dynamic multi-body environments, Ph.D. dissertation (2010)Google Scholar
  12. 12.
    Rohmer, M.F.E., Singh, S.P.N.: V-REP: a versatile and scalable robot simulation framework. In: Proceedings of The International Conference on Intelligent Robots and Systems (IROS) (2013)Google Scholar
  13. 13.
    Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)Google Scholar
  14. 14.
    Ruiz, E., Acuna, R., Certad, N., Terrones, A., Cabrera, M.E.: Development of a control platform for the mobile robot roomba using ROS and a kinect sensor. In: 2013 Latin American Robotics Symposium and Competition, pp. 55–60. IEEE, October 2013.
  15. 15.
    Sucan, I.A., Chitta, S.: Moveit (2014).
  16. 16.
    Rada-Vilela, J.: fuzzylite: a fuzzy logic control library (2014).
  17. 17.
    Medina-Meléndez, W., Fermín, L., Cappelletto, J., Murrugarra, C., Fernández-López, G., Grieco, J.C.: Vision-based dynamic velocity field generation for mobile robots. In: Kozłowski, K. (ed.) Robot Motion and Control 2007. LNCIS, vol. 360, pp. 69–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Estevez, P., Capelletto, J., Alvarez, F., Acuña, R., Fernandez-Lopez, G.: Coordinated navigation using dynamically varying velocity fields. In: 9th International Conference on Artificial Intelligence and Soft Computing (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Mechatronics Research GroupSimón Bolívar UniversityCaracasVenezuela
  2. 2.Control Methods and Robotics LabTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations