Advertisement

Increasing the Robustness of the Montgomery kP-Algorithm Against SCA by Modifying Its Initialization

  • Estuardo Alpirez BockEmail author
  • Zoya Dyka
  • Peter Langendoerfer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10006)

Abstract

The Montgomery kP-algorithm using Lopez-Dahab projective coordinates is a well-known method for performing the scalar multiplication in elliptic curve crypto-systems (ECC). It is considered resistant against simple power analysis (SPA) since each key bit is processed by the same type, amount and sequence of operations, independently of the key bit’s value. Nevertheless, its initialization phase affects this algorithm’s robustness against side channel analysis (SCA) attacks. We describe how the first iteration of the kP processing loop reveals information about the key bit being processed, i.e. bit \(k_{l-2}\). We explain how the value of this bit can be extracted with SPA and how the power profile of its processing can reveal details about the implementation of the algorithm. We propose a modification of the algorithm’s initialization phase and of the processing of bit \(k_{l-2}\), in order to hinder the extraction of its value using SPA. Our proposed modifications increase the algorithm’s robustness against SCA and even reduce the time needed for the initialization phase and for processing \(k_{l-2}\). Compared to the original design, our new implementation needs only 0.12 % additional area, while its energy consumption is almost the same, i.e. we improved the security of the design at no cost.

Keywords

Elliptic curve cryptography Montgomery kP-algorithm Power analysis 

Notes

Acknowledgements

The research leading to these results has received funding from the European Commissions Horizon 2020 under grant agreement from project myAirCoach No. 643607.

References

  1. 1.
    López, J., Dahab, R.: Fast multiplication on elliptic curves over \(GF\)(2\(^{\rm m}\)) without precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Hankerson, D., Lopez Hernandez, J., Menezes, A.: Software implementation of elliptic curve cryptography over binary fields. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 1–24. Springer, Heidelberg (2000). doi: 10.1007/3-540-44499-8_1 CrossRefGoogle Scholar
  3. 3.
    Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2002). doi: 10.1007/3-540-36400-5_22 CrossRefGoogle Scholar
  4. 4.
    Mahdizadeh, H., Masoumi, M.: Novel architecture for efficient FPGA implementation of elliptic curve cryptographic processor over \(GF(2^{163})\). IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(12), 2330–2333 (2013)CrossRefGoogle Scholar
  5. 5.
    Liu, S., Ju, L., Cai, X., Jia, Z., Zhang, Z.: High performance FPGA implementation of elliptic curve cryptography over binary fields. In: 13th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 148–155. IEEE (2014)Google Scholar
  6. 6.
    Li, L., Li, S.: High-performance pipelined architecture of elliptic curve scalar multiplication over \(GF(2^m)\). IEEE Trans. Very Large Scale Integr. (VLSI) Syst. PP(99), 1–10 (2015)CrossRefGoogle Scholar
  7. 7.
    Ansari, B., Hasan, A.: High-performance architecture of elliptic curve scalar multiplication. IEEE Trans. Comput. 57(11), 1443–1453 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Alpirez Bock, E.: SCA resistent implementation of the montgomery \(kP\)-algorithm. Master thesis, BTU Cottbus-Senftenberg (2015)Google Scholar
  9. 9.
    Fan, J., Verbauwhede, I.: An update survey on secure ECC implementations: attacks, countermeasures and cost, cryptography and security. In: Naccache, D. (ed.) From Theory to Applications, pp. 265–282. Springer, Heidelberg (2012)Google Scholar
  10. 10.
    Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999). doi: 10.1007/3-540-48059-5_25 CrossRefGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
    Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal correlation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (1999). doi: 10.1007/978-3-642-17650-0_5 CrossRefGoogle Scholar
  14. 14.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2002). doi: 10.1007/3-540-36400-5_3 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Estuardo Alpirez Bock
    • 1
    Email author
  • Zoya Dyka
    • 1
  • Peter Langendoerfer
    • 1
  1. 1.IHPFrankfurt (Oder)Germany

Personalised recommendations