Verification Techniques for Hybrid Systems

  • Pavithra Prabhakar
  • Miriam Garcia Soto
  • Ratan Lal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9953)

Abstract

A brief introduction to the state-of-the-art techniques in verification of hybrid systems is presented. In particular, the hybrid automaton model is introduced, important correctness properties are discussed and a brief overview of the analysis techniques and tools is presented.

References

  1. 1.
    Aceto, L., Ingólfsdóttir, A., Guldstrand Larsen, K., Srba, J.: Reactive Systems: Modelling, Specification and Verification. Cambridge University Press, New York (2007)CrossRefMATHGoogle Scholar
  2. 2.
    Althoff, M., Le Guernic, C., Krogh, B.H.: Reachable set computation for uncertain time-varying linear systems. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 93–102 (2011)Google Scholar
  3. 3.
    Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of hybrid systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 208–223. Springer, Heidelberg (2003). doi:10.1007/3-540-36577-X_15 CrossRefGoogle Scholar
  4. 4.
    Alur, R., Dang, T., Ivancic, F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006)CrossRefMATHGoogle Scholar
  5. 5.
    Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a tool suite for automatic verification of real-time systems. In: Hybrid Systems, pp. 232–243 (1995)Google Scholar
  6. 6.
    Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_18 CrossRefGoogle Scholar
  7. 7.
    Clarke, E.M., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dang, T., Testylier, R.: Hybridization domain construction using curvature estimation. In: HSCC, pp. 123–132 (2011)Google Scholar
  9. 9.
    Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_30 CrossRefGoogle Scholar
  11. 11.
    Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation, clustering in space-time. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 203–212 (2013)Google Scholar
  12. 12.
    Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 291–305 (2005)Google Scholar
  13. 13.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? In: Proceedings of the ACM Symposium on Theory of Computation, pp. 373–382 (1995)Google Scholar
  14. 14.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997). doi:10.1007/3-540-63166-6_48 CrossRefGoogle Scholar
  15. 15.
    Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (1996)Google Scholar
  16. 16.
    Lal, R., Prabhakar, P.: Beaver: bounded error approximate verification (2015)Google Scholar
  17. 17.
    Liberzon, D.: Switching in Systems and Control. Birkhuser, Boston (2003)CrossRefMATHGoogle Scholar
  18. 18.
    Möhlmann, E., Theel, O.E.: Stabhyli: a tool for automatic stability verification of non-linear hybrid systems. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, HSCC, Philadelphia, PA, USA, 8–11 April 2013, pp. 107–112 (2013)Google Scholar
  19. 19.
    Parrilo, P.A.: Structure semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology, Pasadena, CA, May 2000Google Scholar
  20. 20.
    Pettersson, S., Lennartson, B.: Stability of hybrid systems using LMIs - a gear-box application. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 381–395. Springer, Heidelberg (2000). doi:10.1007/3-540-46430-1_32 CrossRefGoogle Scholar
  21. 21.
    Prabhakar, P., Garcia Soto, M.: Abstraction based model-checking of stability of hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 280–295. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_20 CrossRefGoogle Scholar
  22. 22.
    Prabhakar, P., Soto, M.G.: Averist: algorithmic verifier for stability. In: International Workshop on Numerical Software Verification (2015)Google Scholar
  23. 23.
    Prabhakar, P., Soto, M.G.: Counterexample guided abstraction refinement for stability analysis. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 495–512. Springer, Heidelberg (2016). doi:10.1007/978-3-319-41528-4_27 CrossRefGoogle Scholar
  24. 24.
    Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow computations. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 133–142 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Pavithra Prabhakar
    • 1
  • Miriam Garcia Soto
    • 2
  • Ratan Lal
    • 1
  1. 1.Department of Computer ScienceKansas State UniversityManhattanUSA
  2. 2.IMDEA Software InstituteMadridSpain

Personalised recommendations