Automatic Synthesis of Code Using Genetic Programming

  • Doron PeledEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9952)


Correct-by-design automatic system construction can relieve both programmers and quality engineers from part of their tasks. Classical program synthesis involves a series of transformations, starting with the given formal specification. However, this approach is often prohibitively intractable, and in some cases undecidable. Model-checking-based genetic programming provides a method for software synthesis; it uses randomization, together with model checking, to heuristically search for code that satisfies the given specification. We present model checking based genetic programming as an alternative to classical transformational synthesis and study its weakness and strengths.


  1. 1.
    Bar-David, Y., Taubenfeld, G.: Automatic discovery of mutual exclusion algorithms. In PODC, p. 305 (2003)Google Scholar
  2. 2.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (2000)Google Scholar
  3. 3.
    Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Dembiński, P., Średniawa, M. (eds.) IFIP WG6.1. IFIP, pp. 3–18. Springer, Heidelberg (1995)Google Scholar
  4. 4.
    Harman, M., Jones, B.F.: Software engineering using metaheuristic innovative algorithms: workshop report. Inf. Softw. Technol. 43(14), 905–907 (2001)CrossRefGoogle Scholar
  5. 5.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)Google Scholar
  6. 6.
    Johnson, C.G.: Genetic programming with fitness based on model checking. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Katz, G., Peled, D.A.: Genetic Programming and model checking: synthesizing new mutual exclusion algorithms. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 33–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Katz, G., Peled, D.: Model checking-based genetic programming with an application to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78800-3_11 CrossRefGoogle Scholar
  9. 9.
    Katz, G., Peled, D.: Synthesizing solutions to the leader election problem using model checking and genetic programming. In: Namjoshi, K., Zeller, A., Ziv, A. (eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19237-1_13 CrossRefGoogle Scholar
  10. 10.
    Katz, G., Peled, D.: Code mutation in verification and automatic code correction. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 435–450. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12002-2_36 CrossRefGoogle Scholar
  11. 11.
    Katz, G., Peled, D.: MCGP: a software synthesis tool based on model checking and genetic programming. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 359–364. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  13. 13.
    Langdon, W.B., Harman, M.: Optimizing existing software with genetic programming. IEEE Trans. Evol. Comput. 19(1), 118–135 (2015)CrossRefGoogle Scholar
  14. 14.
    Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N., Barringer, H. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Perez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing multiparty synchronization. Concurr. Pract. Exp. 16(12), 1173–1206 (2004)CrossRefGoogle Scholar
  16. 16.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190 (1989)Google Scholar
  17. 17.
    Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: FOCS, pp. 746–757 (1990)Google Scholar
  18. 18.
    Safra, S.: On the complexity of omega-automata. In: 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, USA, 24-26 October 1988, pp. 319–327 (1988)Google Scholar
  19. 19.
    Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pp. 133–192 (1990)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceBar Ilan UniversityRamat GanIsrael

Personalised recommendations