Advertisement

Statistical Model Checking: Past, Present, and Future

  • Kim G. Larsen
  • Axel LegayEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9952)

Abstract

Statistical Model Checking (SMC) is a compromise between verification and testing where executions of the systems are monitored until an algorithm from statistics can produce an estimate for the system to satisfy a given property.

The objective of this introduction is to summarizes SMC as well as a series of challenges for which contributors at Isola propose a solution.

Contributions include new SMC toolsets, new flexible SMC algorithms for larger classes of systems, and new applications.

Keywords

Model Check Stochastic System Linear Temporal Logic Reachable State Sequential Probability Ratio Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [A.99]
    Alur, R.: Timed automata. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999). doi: 10.1007/3-540-48683-6_3 CrossRefGoogle Scholar
  2. [AM]
    Arora, S.: Panduranga Rao, M.V.: Probabilistic model checking of incomplete models. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 62–76. Springer, Cham (2016)Google Scholar
  3. [AvdP]
    Ahmad, W., van de Pol, J.: Synthesizing energy-optimal controllers for multi-processor dataflow applications with uppaal. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 94–113. Springer, Cham (2016)Google Scholar
  4. [BCCZ99]
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999). doi: 10.1007/3-540-49059-0_14 CrossRefGoogle Scholar
  5. [BCLS13]
    Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible, distributable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40196-1_12 CrossRefGoogle Scholar
  6. [BCM+92]
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: \(10^{20}\) states and beyond. Inf. Comp. 98(2), 142–170 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [BHHK03]
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time markov chains. IEEE Trans. Software Eng. 29(6), 524–541 (2003)CrossRefzbMATHGoogle Scholar
  8. [BJK+05]
    Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  9. [BK08]
    Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind Series). The MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  10. [BMR05]
    Ball, T., Millstein, T.D., Rajamani, S.K.: Polymorphic predicate abstraction. ACM Trans. Program. Lang. Syst. 27(2) (2005)Google Scholar
  11. [Bry92]
    Bryant, R.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)CrossRefGoogle Scholar
  12. [CB06]
    Ciesinski, F., Baier, C.: Liquor: a tool for qualitative and quantitative linear time analysis of reactive systems. In: Proceedings of 3rd International Conference on the Quantitative Evaluation of Systems (QEST), pp. 131–132. IEEE (2006)Google Scholar
  13. [CE81]
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). doi: 10.1007/BFb0025774 CrossRefGoogle Scholar
  14. [CG04]
    Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 147–188. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24611-4_5 CrossRefGoogle Scholar
  15. [CGP99]
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  16. [CV03]
    Clarke, E., Veith, H.: Counterexamples revisited: principles, algorithms, applications. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 208–224. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-39910-0_9 CrossRefGoogle Scholar
  17. [CY95]
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [DG07]
    Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1–2), 69–86 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [DLL+11]
    David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_27 CrossRefGoogle Scholar
  20. [DPP04]
    Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisimulation equivalence. Theoret. Comput. Sci. 311(1–3), 221–256 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [FG05]
    Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software. In: POPL, pp. 110–121. ACM (2005)Google Scholar
  22. [GPS02]
    Cabodi, G., Camurati, P., Quer, S.: Can BDDs compete with sat solvers on bounded model checking? In: Proceedings of 39th Design Automation Conference (DAC), pp. 117–122. ACM (2002)Google Scholar
  23. [HCZ11]
    Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic properties with unbounded until. In: Davies, J., Silva, L., Simao, A. (eds.) SBMF 2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19829-8_10 CrossRefGoogle Scholar
  24. [HR02]
    Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002). doi: 10.1007/3-540-46002-0_24 CrossRefGoogle Scholar
  25. [JKO+07]
    Jansen, D.N., Katoen, J.-P., Oldenkamp, M., Stoelinga, M., Zapreev, I.: How fast and fat is your probabilistic model checker? an experimental performance comparison. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 69–85. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-77966-7_9 CrossRefGoogle Scholar
  26. [JLL+]
    Jegourel, C., Lukina, A., Legay, A., Smolka, S., Grosu, R., Bartocci, E.: Feedback control for statistical model checking of cyber-physical systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 46–61. Springer, Cham (2016)Google Scholar
  27. [KNP04]
    Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 2.0: a tool for probabilistic model checking. In: QEST, pp. 322–323. IEEE (2004)Google Scholar
  28. [KNP11]
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_47 CrossRefGoogle Scholar
  29. [Kre]
    Kretinsky, J.: Survey of statistical verification of linear unbounded properties: model checking and distances. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 27–45. Springer, Cham (2016)Google Scholar
  30. [LdPB]
    Linard, A., de Paula Bueno, M.L.: Towards adaptive scheduling of maintenance for cyber-physical systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 134–150. Springer, Cham (2016)Google Scholar
  31. [LST]
    Legay, A., Sedwards, S., Traonouez, L.-M.: Plasma lab: a modular statistical model checking platform. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 77–93. Springer, Cham (2016)Google Scholar
  32. [Oka59]
    Okamoto, M.: Some inequalities relating to the partial sum of binomial probabilities. Ann. Inst. Stat. Math. 10, 29–35 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  33. [Pnu77]
    Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th Annual Symposium on Foundations of Computer Science (FOCS), pp. 46–57 (1977)Google Scholar
  34. [RdBS]
    Reijsbergen, D., de Boer, P.-T., Scheinhardt, W.: Hypothesis testing for rare-event simulation: limitations and possibilities. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 16–26. Springer, Cham (2016)Google Scholar
  35. [RS]
    Ruijters, E., Stoelinga, M.: Better railway engineering through statistical model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 151–165. Springer, Cham (2016)Google Scholar
  36. [Str]
    Strnadel, J.: On creation, analysis of reliability models by means of stochastic timed automata, statistical model checking: principle. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 166–181. Springer, Cham (2016)Google Scholar
  37. [SVA04]
    Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-27813-9_16 CrossRefGoogle Scholar
  38. [SVA05]
    Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic systems. In: CAV, pp. 266–280 (2005)Google Scholar
  39. [tBLVL]
    ter Beek, M., Legay, A., Vandin, A., Lafuente, A.L.: Statistical model checking for product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 114–133. Springer, Cham (2016)Google Scholar
  40. [Wal45]
    Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–186 (1945)MathSciNetCrossRefzbMATHGoogle Scholar
  41. [WG93]
    Wolper, P., Godefroid, P.: Partial-order methods for temporal verification. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 233–246. Springer, Heidelberg (1993). doi: 10.1007/3-540-57208-2_17 Google Scholar
  42. [You05a]
    Younes, H.L.S.: Verification and planning for stochastic processes with asynchronous events. Ph.D. thesis, Carnegie Mellon (2005)Google Scholar
  43. [You05b]
    Younes, H.L.S.: Verification and planning for stochastic processes with asynchronous events. Ph.D. thesis, Carnegie Mellon University (2005)Google Scholar
  44. [You06]
    Younes, H.L.S.: Error control for probabilistic model checking. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 142–156. Springer, Heidelberg (2005). doi: 10.1007/11609773_10 CrossRefGoogle Scholar
  45. [YS02]
    Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002). doi: 10.1007/3-540-45657-0_17 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Aalborg University InriaAalborgDenmark

Personalised recommendations