Advertisement

Optimistic Decision-Theoretic Rough Sets in Multi-covering Space

  • Caihui LiuEmail author
  • Meizhi Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9920)

Abstract

This paper discusses optimistic multigranulation decision-theoretic rough sets in multi-covering space. First, by using the strategy “seeking commonality while preserving difference”, we propose the notion of optimistic multigranulation decision-theoretic rough sets on the basis of Bayesian decision procedure. Then, we investigate some important properties of the model. Finally, we investigate the relationships between the proposed model and other related rough set models.

Keywords

Multigranulation Decision-theoretic rough sets Optimistic Multi-covering space 

Notes

Acknowledgements

This work was supported by the China National Natural Science Foundation of Youth Science Foundation under Grant No.: 61305052, 61403329, the Key Technology Research and Development Program of Education Bureau of Jiangxi Province of China under Grant No.: GJJ14660, the Key Technology Research and Development Program of Jiangxi Province of China under Grant No.: 20142BBF60010, 20151BBF60071.

References

  1. 1.
    Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating concepts. Int. J. Man Mach. Stud. 37, 793–809 (1992)CrossRefGoogle Scholar
  2. 2.
    Herbert, J.P., Yao, J.T.: Game-theoretic rough sets. Fundamenta Informaticae. 108(3–4), 267–286 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Liu, D., Li, T.R., Li, H.X.: A multiple-category classification approach with decision-theoretic rough sets. Fundamenta Informaticae. 115(2–3), 173–188 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Yu, H., Liu, Z.G., Wang, G.Y.: An automatic method to determine the number of clusters using decision-theoretic rough set. Int. J. Approximate Reasoning 55(1), 101–115 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Li, T.J., Yang, X.P.: An axiomatic characterization of probabilistic rough sets. Int. J. Approximate Reasoning 55(1), 130–141 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jia, X.Y., Tang, Z.M., Liao, W.H., Shang, L.: On an optimization representation of decision-theoretic rough set model. Int. J. Approximate Reasoning 55(1), 156–166 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Inf. Sci. 180, 341–353 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yao, Y.: An outline of a theory of three-way decisions. In: Yao, J.T., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 1–17. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Zhou, B., Yao, Y., Luo, J.: A three-way decision approach to email spam filtering. In: Farzindar, A., Kešelj, V. (eds.) AI 2010. LNCS (LNAI), vol. 6085, pp. 28–39. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13059-5_6 CrossRefGoogle Scholar
  10. 10.
    Li, H., Zhang, L., Huang, B., Zhou, X.: Sequential three-way decision and granulation for cost-sensitive face recognition. Knowl.-Based Syst. 91, 241–251 (2016)CrossRefGoogle Scholar
  11. 11.
    Zhang, H.R., Min, F.: Three-way recommender systems based on random forests. Knowl.-Based Syst. 91, 275–286 (2016)CrossRefGoogle Scholar
  12. 12.
    Pedrycz, W.: Granular Computing: Analysis and Design of Intelligent Systems. CRC Press, Boca Raton (2013)CrossRefGoogle Scholar
  13. 13.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11, 341–356 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Qian, Y.H., Liang, J.Y., Yao, Y.Y., Dang, C.Y.: MGRS: A multi-granulation rough set. Inf. Sci. 180, 949–970 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Qian, Y.H., Liang, J.Y., Dang, C.Y.: Incomplete multigranulation rough set. IEEE Trans. Syst. Man Cybern. Part A 20, 420–430 (2010)CrossRefGoogle Scholar
  16. 16.
    Xu, W.H., Sun, W.X., Zhang, X.Y., Zhang, W.X.: Multiple granulation rough set approach to ordered information systems. Int. J. Gen. Syst. 41(5), 475–501 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yang, X.B., Qi, Y., Song, X.N., Yang, J.Y.: Test cost sensitive multigranulation rough set: model and minimal cost selection. Inf. Sci. 250, 184–199 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Huang, B., Guo, C.X., Zhuang, Y.L., Li, H.X., Zhou, X.Z.: Intuitionistic fuzzy multigranulation rough sets. Inf. Sci. 277, 299–320 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    She, Y.H., He, X.L.: On the structure of the multigranulation rough set model. Knowl. Based Syst. 36, 81–92 (2012)CrossRefGoogle Scholar
  20. 20.
    Yao, Y., She, Y.: Rough set models in multigranulation spaces. Inf. Sci. 327, 40–56 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhang, X.H., Miao, D.Q., Liu, C.H., Le, M.L.: Constructive methods of rough approximation operators and multigranulation rough sets. Knowl. Based Syst. 91, 114–125 (2016)CrossRefGoogle Scholar
  22. 22.
    Qian, Y.H., Zhang, H., Sang, Y.L., Liang, J.L.: Multigranulation decision-theoretic rough sets. Int. J. Approximate Reasoning 55(1), 225–237 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zakowski, W.: Approximations in the space \((U,\Pi )\). Demonstratio Math. 16, 761–769 (1983)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Liu, C.H., Cai, K.C.: Multi-granulation covering rough sets based on the union of minimal descriptions of elements. In: CAAI Transactions on Intelligent Systems, Accepted. (In Chinese)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceGannan Normal UniversityGanzhouPeople’s Republic of China
  2. 2.Department of Physical EducationGannan Normal UniversityGanzhouChina

Personalised recommendations