Building an Ensemble of Complementary Segmentation Methods by Exploiting Probabilistic Estimates

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10019)


Two common ways of approaching atlas-based segmentation of brain MRI are (1) intensity-based modelling and (2) multi-atlas label fusion. Intensity-based methods are robust to registration errors but need distinctive image appearances. Multi-atlas label fusion can identify anatomical correspondences with faint appearance cues, but needs a reasonable registration. We propose an ensemble segmentation method that combines the complementary features of both types of approaches. Our method uses the probabilistic estimates of the base methods to compute their optimal combination weights in a spatially varying way. We also propose an intensity-based method (to be used as base method) that offers a trade-off between invariance to registration errors and dependence on distinct appearances. Results show that sacrificing invariance to registration errors (up to a certain degree) improves the performance of our intensity-based method. Our proposed ensemble method outperforms the rest of participating methods in most of the structures of the NeoBrainS12 Challenge on neonatal brain segmentation. We achieve up to \(\sim \)10 % of improvement in some structures.


Multi-atlas segmentation Ensemble learning Patch-based label fusion Brain MRI 



The first author is co-financed by the Marie Curie FP7-PEOPLE-2012-COFUND 462 Action. Grant agreement no: 600387.


  1. 1.
    Anbeek, P., Isgum, I., van Kooij, B.J.M., Mol, C.P., Kersbergen, K.J., Groenendaal, F., Viergever, M.A., de Vries, L.S., Benders, M.J.N.L.: Automatic segmentation of eight tissue classes in neonatal brain MRI. PLoS ONE 8(12) (2013)Google Scholar
  2. 2.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)CrossRefGoogle Scholar
  3. 3.
    Avants, B.B., Tustison, N.J., Wu, J., Cook, P.A., Gee, J.C.: An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 9(4), 381–400 (2011)CrossRefGoogle Scholar
  4. 4.
    Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)CrossRefGoogle Scholar
  5. 5.
    Isgum, I., Benders, M.J.N.L., Avants, B., Cardoso, M.J., Counsell, S.J., Gomez, E.F., Gui, L., Hüppi, P.S., Kersbergen, K.J., Makropoulos, A., Melbourne, A., Moeskops, P., Mol, C.P., Kuklisova-Murgasova, M., Rueckert, D., Schnabel, J.A., Srhoj-Egekher, V., Wu, J., Wang, S., de Vries, L.S., Viergever, M.A.: Evaluation of automatic neonatal brain segmentation algorithms: the neobrains12 challenge. Med. Image Anal. 20(1), 135–151 (2015)CrossRefGoogle Scholar
  6. 6.
    Ledig, C., Heckemann, R.A., Hammers, A., Lopez, J.C., Newcombe, V.F.J., Makropoulos, A., Lötjönen, J., Menon, D.K., Rueckert, D.: Robust whole-brain segmentation: application to traumatic brain injury. Med. Image Anal. 21, 40–58 (2015)CrossRefGoogle Scholar
  7. 7.
    Li, L., Hu, Q., Wu, X., Yu, D.: Exploration of classification confidence in ensemble learning. Pattern Recogn. 47, 3120–3131 (2014)CrossRefGoogle Scholar
  8. 8.
    Makropoulos, A., Gousias, I.S., Ledig, C., Aljabar, P., Serag, A., Hajnal, J.H., Edwards, A.D., Counsell, S.J., Rueckert, D.: Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE TMI 33(9), 1818–1831 (2014)Google Scholar
  9. 9.
    Nyúl, L.G., Udupa, J.K.: On standardizing the MR image instensity scale. Magn. Reson. Med. 42(6), 1072–1081 (1999)CrossRefGoogle Scholar
  10. 10.
    Sanroma, G., Benkarim, O.M., Piella, G., Wu, G., Zhu, X., Shen, D., Ballester, M.Á.G.: Discriminative dimensionality reduction for patch-based label fusion. In: Bhatia, K., et al. (eds.) MLMMI 2015. LNCS, vol. 9487, pp. 94–103. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-27929-9_10 CrossRefGoogle Scholar
  11. 11.
    Shaji, R.A.A., Smith, K., Lucchi, A., Fua, P., Susstrünk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  12. 12.
    Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)CrossRefGoogle Scholar
  13. 13.
    Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 611–623 (2013)CrossRefGoogle Scholar
  14. 14.
    Worth, A.J.: The internet brain segmentation repository (ibsr)Google Scholar
  15. 15.
    Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Univ. Pompeu FabraBarcelonaSpain
  2. 2.ICREABarcelonaSpain

Personalised recommendations