Discrete Abstraction of Multiaffine Systems

  • Hui KongEmail author
  • Ezio Bartocci
  • Sergiy Bogomolov
  • Radu Grosu
  • Thomas A. Henzinger
  • Yu Jiang
  • Christian Schilling
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9957)


Many biological systems can be modeled as multiaffine hybrid systems. Due to the nonlinearity of multiaffine systems, it is difficult to verify their properties of interest directly. A common strategy to tackle this problem is to construct and analyze a discrete overapproximation of the original system. However, the conservativeness of a discrete abstraction significantly determines the level of confidence we can have in the properties of the original system. In this paper, in order to reduce the conservativeness of a discrete abstraction, we propose a new method based on a sufficient and necessary decision condition for computing discrete transitions between states in the abstract system. We assume the state space partition of a multiaffine system to be based on a set of multivariate polynomials. Hence, a rectangular partition defined in terms of polynomials of the form \((x_i-c)\) is just a simple case of multivariate polynomial partition, and the new decision condition applies naturally. We analyze and demonstrate the improvement of our method over the existing methods using some examples.


Multiaffine system Hybrid system Discrete abstraction State space partition Gröbner basis 



This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23, S11405-N23 and S11412-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).


  1. 1.
    Alur, R., Dang, T., Ivančić, F.: Progress on reachability analysis of hybrid systems using predicate abstraction. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 4–19. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 20–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bak, S., Bogomolov, S., Henzinger, T.A., Johnson, T.T., Prakash, P.: Scalable static hybridization methods for analysis of nonlinear systems. In: Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, HSCC 2016, Vienna, Austria, pp. 155–164, 12–14 April 2016Google Scholar
  4. 4.
    Bartocci, E., Corradini, F., Di Berardini, M.R., Entcheva, E., Smolka, S.A., Grosu, R.: Modeling and simulation of cardiac tissue using hybrid I/O automata. Theor. Comput. Sci. 410(33), 3149–3165 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bartocci, E., Corradini, F., Entcheva, E., Grosu, R., Smolka, S.A.: Cellexcite: an efficient simulation environment for excitable cells. BMC Bioinform. 9, S–2 (2008)CrossRefGoogle Scholar
  6. 6.
    Bartocci, E., Lió, P.: Computational modeling, formal analysis and tools for systems biology. PLOS Comput. Biol. 12(1), e1004591 (2016)CrossRefGoogle Scholar
  7. 7.
    Bartocci, E., Liò, P., Merelli, E., Paoletti, N.: Multiple verification in complex biological systems: the bone remodelling case study. Trans. Comput. Syst. Biol. 14, 53–76 (2012)CrossRefzbMATHGoogle Scholar
  8. 8.
    Batt, G., Belta, C., Weiss, R.: Temporal logic analysis of gene networks under parameter uncertainty. Trans. Autom. Control 53(Special Issue), 215–229 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Batt, G., De Jong, H., Page, M., Geiselmann, J.: Symbolic reachability analysis of genetic regulatory networks using discrete abstractions. Automatica 44(4), 982–989 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Belta, C., Habets, L.C.: Controlling a class of nonlinear systems on rectangles. Trans. Autom. Control 51(11), 1749–1759 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., Johnson, T.T., Ladan, H., Podelski, A., Wehrle, M.: Guided search for hybrid systems based on coarse-grained space abstractions. Int. J. Softw. Tools Technol. Transf. 18(4), 449–467 (2016). doi: 10.1007/s10009-015-0393-y CrossRefGoogle Scholar
  12. 12.
    Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasareanu, C., Podelski, A., Strump, T.: Assume-guarantee abstraction refinement meets hybrid systems. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 116–131. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Bogomolov, S., Schilling, C., Bartocci, E., Batt, G., Kong, H., Grosu, R.: Abstraction-based parameter synthesis for multiaffine systems. In: Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 19–35. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-26287-1_2 CrossRefGoogle Scholar
  14. 14.
    Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, New York (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Dang, T., Le Guernic, C., Maler, O.: Computing reachable states for nonlinear biological models. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 126–141. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Dreossi, T., Dang, T.: Parameter synthesis for polynomial biological models. In: Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control, pp. 233–242. ACM (2014)Google Scholar
  17. 17.
    Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Habets, L., Collins, P.J., van Schuppen, J.H.: Reachability and control synthesis for piecewise-affine hybrid systems on simplices. IEEE Trans. Autom. Control 51(6), 938–948 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Habets, L., Van Schuppen, J.H.: A control problem for affine dynamical systems on a full-dimensional polytope. Automatica 40(1), 21–35 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Habets, L.C.G.J.M., Van Schuppen, J.: A control problem for affine dynamical systems on a full-dimensional simplex. Rep. Probab. Netw. Algorithms 17, 1–19 (2000)Google Scholar
  21. 21.
    Jiang, Y., Zhang, H., Li, Z., Deng, Y., Song, X., Gu, M., Sun, J.: Design and optimization of multiclocked embedded systems using formal techniques. IEEE Trans. Ind. Electron. 62(2), 1270–1278 (2015)CrossRefGoogle Scholar
  22. 22.
    Jiang, Y., Zhang, H., Zhang, H., Liu, H., Song, X., Gu, M., Sun, J.: Design of mixed synchronous/asynchronous systems with multiple clocks. IEEE Trans. Parallel Distrib. Syst. 26(8), 2220–2232 (2015)CrossRefGoogle Scholar
  23. 23.
    Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 348–362. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Kong, H., Bogomolov, S., Schilling, C., Jiang, Y., Henzinger, T.A., Invariant clusters for hybrid systems. arXiv preprint arXiv: 1605.01450 (2016)
  25. 25.
    Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-condition-based barrier certificate generation for safety verification of hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Kong, H., Song, X., Han, D., Gu, M., Sun, J.: A new barrier certificate for safety verification of hybrid systems. Comput. J. 57(7), 1033–1045 (2014)CrossRefGoogle Scholar
  27. 27.
    Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical systems. In: International Conference on Embedded Software, pp. 97–106. ACM (2011)Google Scholar
  28. 28.
    Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant generation for polynomial continuous systems. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 268–288. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49122-5_13 CrossRefGoogle Scholar
  29. 29.
    Tiwari, A.: Abstractions for hybrid systems. Formal Methods Syst. Des. 32(1), 57–83 (2008)CrossRefzbMATHGoogle Scholar
  30. 30.
    Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Hui Kong
    • 1
    Email author
  • Ezio Bartocci
    • 2
  • Sergiy Bogomolov
    • 1
  • Radu Grosu
    • 2
  • Thomas A. Henzinger
    • 1
  • Yu Jiang
    • 3
  • Christian Schilling
    • 4
  1. 1.Institute of Science and Technology AustriaKlosterneuburgAustria
  2. 2.Vienna University of TechnologyViennaAustria
  3. 3.University of Illinois at Urbana-ChampaignChampaignUSA
  4. 4.University of FreiburgFreiburg im BreisgauGermany

Personalised recommendations