Verification of Temporal Properties of Neuronal Archetypes Modeled as Synchronous Reactive Systems

  • Elisabetta De Maria
  • Alexandre Muzy
  • Daniel Gaffé
  • Annie Ressouche
  • Franck Grammont
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9957)


There exists many ways to connect two, three or more neurons together to form different graphs. We call archetypes only the graphs whose properties can be associated with specific classes of biologically relevant structures and behaviors. These archetypes are supposed to be the basis of typical instances of neuronal information processing. To model different representative archetypes and express their temporal properties, we use a synchronous programming language dedicated to reactive systems (Lustre). The properties are then automatically validated thanks to several model checkers supporting data types. The respective results are compared and depend on their underlying abstraction methods.



The authors would like to thank Gérard Berry for an inspiring talk at the Collège de France (concerning the checking of temporal properties of neuronal structures) as well as for having indicated us the researchers competent at the use of synchronous programming language libraries (in Sophia Antipolis).


  1. 1.
  2. 2.
    Nuxmv webpage.
  3. 3.
    Berry, G., Cosserat, L.: The ESTEREL synchronous programming language and its mathematical semantics. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.) CONCURRENCY 1984. LNCS, vol. 197, pp. 389–448. Springer, Heidelberg (1985). doi: 10.1007/3-540-15670-4_19 CrossRefGoogle Scholar
  4. 4.
    Das, S.: Elements of artificial neural networks [book reviews]. IEEE Trans. Neural Netw. 9(1), 234–235 (1998)CrossRefGoogle Scholar
  5. 5.
    De Maria, E., Muzy, A., Gaffé, D., Ressouche, A., Grammont, F.: Verification of Temporal Properties of Neuronal Archetypes Using Synchronous Models. Research report 8937, UCA, Inria; UCA, I3S; UCA, LEAT; UCA, LJAD, July 2016.
  6. 6.
    Franzén, A.: Using satisfiability modulo theories for inductive verification of lustre programs. Electron. Notes Theor. Comput. Sci. 144(1), 19–33 (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gerstner, W., Kistler, W.: Spiking Neuron Models: An Introduction. Cambridge University Press, New York (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Hagen, G., Tinelli, C.: Scaling up the formal verification of lustre programs with SMT-based techniques. In: Formal Methods in Computer-Aided Design, FMCAD 2008, Portland, Oregon, USA, pp. 1–9, 17–20 November 2008Google Scholar
  9. 9.
    Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer Academic, Dordrecht (1993)CrossRefzbMATHGoogle Scholar
  10. 10.
    Halbwachs, N., Lagnier, F., Raymond, P.: Synchronous observers and the verification of reactive systems. In: Nivat, M., Rattray, C., Rus, T., Scollo, G. (eds.) Algebraic Methodology and Software Technology (AMAST ’93). Workshops in Computing, pp. 83–96. Springer, London (1994)CrossRefGoogle Scholar
  11. 11.
    Halbwachs, N., Raymond, P.: Validation of synchronous reactive systems: from formal verification to automatic testing. In: Thiagarajan, P.S., Yap, R.H.C. (eds.) ASIAN 1999. LNCS, vol. 1742, p. 1. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Jeannet, B.: Dynamic partitioning in linear relation analysis: application to the verification of reactive systems. Formal Methods Syst. Des. 23(1), 5–37 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Maass, W., Graz, T.U.: Lower bounds for the computational power of networks of spiking neurons. Neural Comput. 8, 1–40 (1995)CrossRefGoogle Scholar
  14. 14.
    Maréchal, A., Fouilhé, A., King, T., Monniaux, D., Périn, M.: Polyhedral approximation of multivariate polynomials using Handelman’s theorem. In: Jobstmann, B., Leino, K.R.M. (eds.) Verification, Model Checking, and Abstract Interpretation. LNCS, vol. 9583, pp. 166–184. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  15. 15.
    Markram, H.: The blue brain project. Nat. Rev. Neurosci. 7(2), 153–160 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Matsuoka, K.: Mechanisms of frequency and pattern control in the neural rhythm generators. Biol. Cybern. 56(5–6), 345–353 (1987)CrossRefGoogle Scholar
  17. 17.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Elisabetta De Maria
    • 1
  • Alexandre Muzy
    • 1
  • Daniel Gaffé
    • 2
  • Annie Ressouche
    • 3
  • Franck Grammont
    • 4
  1. 1.Université Côte d’Azur, CNRS, I3SSophia AntipolisFrance
  2. 2.Université Côte d’Azur, CNRS, LEATSophia AntipolisFrance
  3. 3.Université Côte d’Azur, InriaSophia AntipolisFrance
  4. 4.Université Côte d’Azur, CNRS, LJADNiceFrance

Personalised recommendations