Toward Modelling and Analysis of Transient and Sustained Behaviour of Signalling Pathways

  • Matej Hajnal
  • David ŠafránekEmail author
  • Martin Demko
  • Samuel Pastva
  • Pavel Krejčí
  • Luboš Brim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9957)


Signalling pathways provide a complex cellular information processing machinery that evaluates particular input stimuli and transfers them into the genome by means of regulation of specific genes expression. In this short paper, we provide a preliminary study targeting minimal models representing the topology of main signalling mechanisms. A special emphasis is given to distinguishing between monotonous (sustained) and non-monotonous (transient) time-course behaviour. A set of minimal parametrised ODE models is formulated and analysed in a workflow based on formal methods.


Model Check Temporal Logic Transient Behaviour Linear Temporal Logic State Predicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bartocci, E., Liò, P.: Computational modeling, formal analysis, and tools for systems biology. PLoS Comput. Biol. 12(1), 1–22 (2016)CrossRefGoogle Scholar
  2. 2.
    Bartocci, E., Liò, P., Merelli, E., Paoletti, N.: Multiple verification in complex biological systems: the bone remodelling case study. In: Priami, C., Petre, I., Vink, E. (eds.) Transactions on Computational Systems Biology XIV. LNCS, vol. 7625, pp. 53–76. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35524-0_3 CrossRefGoogle Scholar
  3. 3.
    Batt, G., Belta, C., Weiss, R.: Model checking liveness properties of genetic regulatory networks. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 323–338. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-checking approach for the analysis of abstract system properties. Sci. Comput. Program. 76, 119–135 (2011)zbMATHCrossRefGoogle Scholar
  5. 5.
    Brim, L., Češka, M., Šafránek, D.: Model checking of biological systems. In: Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H. (eds.) SFM 2013. LNCS, vol. 7938, pp. 63–112. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Brim, L., Češka, M., Demko, M., Pastva, S., Šafránek, D.: Parameter synthesis by parallel coloured CTL model checking. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 251–263. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  7. 7.
    Brim, L., Demko, M., Pastva, S., Šafránek, D.: High-performance discrete bifurcation analysis for piecewise-affine dynamical systems. In: Priami, C., Petre, I., de Vink, E. (eds.) HSB 2015. LNCS, vol. 9271, pp. 58–74. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-26916-0_4 CrossRefGoogle Scholar
  8. 8.
    Calder, M., Duguid, A., Gilmore, S., Hillston, J.: Stronger computational modelling of signalling pathways using both continuous and discrete-state methods. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 63–77. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Courtois-Cox, S., Williams, S.M.G., Reczek, E.E., Johnson, B.W., McGillicuddy, L.T., Johannessen, C.M., Hollstein, P.E., MacCollin, M., Cichowski, K.: A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10(6), 459–472 (2006)CrossRefGoogle Scholar
  10. 10.
    Donzé, A., Clermont, G., Langmead, C.J.: Parameter synthesis in nonlinear dynamical systems: application to systems biology. J. Comput. Biol. 17(3), 325–336 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fages, F., Rizk, A.: On the analysis of numerical data time series in temporal logic. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 48–63. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perls, B., Thieffry, D.: Integrative modelling of the influence of mapk network on cancer cell fate decision. PLoS Comput. Biol. 9(10), 1–15 (2013)CrossRefGoogle Scholar
  13. 13.
    Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Kholodenko, B.N.: Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7(3), 165–176 (2006)CrossRefGoogle Scholar
  15. 15.
    Klipp, E., Liebermeister, W.: Mathematical modeling of intracellular signaling pathways. BMC Neurosci. 7(1), 1–16 (2006)CrossRefGoogle Scholar
  16. 16.
    Kwiatkowska, M.Z., Heath, J.K.: Biological pathways as communicating computer systems. J. Cell Sci. 122(16), 2793–2800 (2009)CrossRefGoogle Scholar
  17. 17.
    Li, C., Suzuki, S., Ge, Q.W., Nakata, M., Matsuno, H., Miyano, S.: Structural modeling and analysis of signaling pathways based on Petri nets. J. Bioinform. Comput. Biol. 04(05), 1119–1140 (2006)CrossRefGoogle Scholar
  18. 18.
    Li, X., Shen, L., Shang, X., Liu, W.: Subpathway analysis based on signaling-pathway impact analysis of signaling pathway. PLoS ONE 10(7), 1–19 (2015)Google Scholar
  19. 19.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics 25(12) (2009)Google Scholar
  20. 20.
    Sasagawa, S., Ozaki, Y.I., Fujita, K., Kuroda, S.: Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat. Cell Biol. 7(4), 365–373 (2005)CrossRefGoogle Scholar
  21. 21.
    Wang, D.Y., Cardelli, L., Phillips, A., Piterman, N., Fisher, J.: Computational modeling of the EGFR network elucidates control mechanisms regulating signal dynamics. BMC Syst. Biol. 3(1), 1–17 (2009)CrossRefGoogle Scholar
  22. 22.
    Yamada, S., Taketomi, T., Yoshimura, A.: Model analysis of difference between EGF pathway and FGF pathway. Biochem. Biophys. Res. Commun. 314(4), 1113–1120 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Matej Hajnal
    • 1
  • David Šafránek
    • 1
    Email author
  • Martin Demko
    • 1
  • Samuel Pastva
    • 1
  • Pavel Krejčí
    • 2
  • Luboš Brim
    • 1
  1. 1.Systems Biology Laboratory, Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Biology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic

Personalised recommendations