Advertisement

Deep Parameter Optimisation for Face Detection Using the Viola-Jones Algorithm in OpenCV

  • Bobby R. BruceEmail author
  • Jonathan M. AitkenEmail author
  • Justyna PetkeEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9962)

Abstract

OpenCV is a commonly used computer vision library containing a wide variety of algorithms for the AI community. This paper uses deep parameter optimisation to investigate improvements to face detection using the Viola-Jones algorithm in OpenCV, allowing a trade-off between execution time and classification accuracy. Our results show that execution time can be decreased by 48 % if a 1.80 % classification inaccuracy is permitted (compared to 1.04 % classification inaccuracy of the original, unmodified algorithm). Further execution time savings are possible depending on the degree of inaccuracy deemed acceptable by the user.

Keywords

Deep parameter optimisation Automated parameter tuning Multi-objective optimisation Genetic improvement GI SBSE OpenCV Viola-Jones Algorithm 

References

  1. 1.
    Aby, P., Jose, A., Dinu, L., John, J., Sabarinath, G.: Implementation and optimization of embedded face detection system. In: International Conference on Signal Processing, Communication, Computing and Networking Technologies (ICSCCN), pp. 250–253 (2011)Google Scholar
  2. 2.
    Aitken, J.M., McAree, O., Veres, S.: Symbiotic relationship between robots - a ROS ARDrone/YouBot library. In: Proceedings of UKACC International Conference on Control (CONTROL) (2016)Google Scholar
  3. 3.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media, Inc., Upper Saddle River (2008)Google Scholar
  4. 4.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  5. 5.
    Goodrich, M.A., Morse, B.S., Gerhardt, D., Cooper, J.L., Quigley, M., Adams, J.A., Humphrey, C.: Supporting wilderness search and rescue using a camera-equipped mini UAV. J. Field Robot. 25(1–2), 89–110 (2008)CrossRefGoogle Scholar
  6. 6.
    Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-21434-9_3 Google Scholar
  7. 7.
    Hsieh, M.A., Cowley, A., Keller, J.F., Chaimowicz, L., Grocholsky, B., Kumar, V., Taylor, C.J., Endo, Y., Arkin, R.C., Jung, B., Wolf, D.F., Sukhatme, G.S., MacKenzie, D.C.: Adaptive teams of autonomous aerial and ground robots for situational awareness. J. Field Robot. 24(11–12), 991–1014 (2007)CrossRefGoogle Scholar
  8. 8.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)Google Scholar
  9. 9.
    Rahman, M., Ren, J., Kehtarnavaz, N.: Real-time implementation of robust face detection on mobile platforms. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1353–1356 (2009)Google Scholar
  10. 10.
    Ren, J., Kehtarnavaz, N., Estevez, L.: Real-time optimization of Viola-Jones face detection for mobile platforms. In: IEEE Circuits and Systems Workshop: System-on-Chip-Design, Applications, Integration, and Software, pp. 1–4 (2008)Google Scholar
  11. 11.
    Shubina, K., Tsotsos, J.K.: Visual search for an object in a 3D environment using a mobile robot. Comput. Vis. Image Underst. 114(5), 535–547 (2010)CrossRefGoogle Scholar
  12. 12.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE (2001)Google Scholar
  13. 13.
    Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)CrossRefGoogle Scholar
  14. 14.
    Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation. In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, pp. 1375–1382 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.SSE Group, Department of Computer Science, CREST CentreUCLLondonUK
  2. 2.Department of Automatic Control and Systems EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations