Advertisement

Prediction of Seizure Spread Network via Sparse Representations of Overcomplete Dictionaries

  • Feng LiuEmail author
  • Wei Xiang
  • Shouyi Wang
  • Bradley Lega
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9919)

Abstract

Epilepsy is one of the most common brain disorders and affect people of all ages. Resective surgery is currently the most effective overall treatment for patients whose seizures cannot be controlled by medications. Seizure spread network with secondary epileptogenesis are thought to be responsible for a substantial portion of surgical failures. However, there is still considerable risk of surgical failures for lacking of priori knowledge. Cortico-cortical evoked potentials (CCEP) offer the possibility of understanding connectivity within seizure spread networks to know how seizure evolves in the brain as it measures directly the intracranial electric signals. This study is one of the first works to investigate effective seizure spread network modeling using CCEP signals. The previous unsupervised brain network connectivity problem was converted into a classical supervised sparse representation problem for the first time. In particular, we developed an effective network modeling framework using sparse representation of over-determined features extracted from extensively designed experiments to predict real seizure spread network for each individual patient. The experimental results on five patients achieved prediction accuracy of about 70 %, which indicates that it is possible to predict seizure spread network from stimulated CCEP networks. The developed CCEP signal analysis and network modeling approaches are promising to understand network mechanisms of epileptogenesis and have a potential to render clinicians better epilepsy surgical decisions in the future.

Keywords

Brain connectivity Sparse representation Feature selection CCEP Seizure spread network 

References

  1. 1.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)CrossRefGoogle Scholar
  3. 3.
    Deco, G., Tononi, G., Boly, M., Kringelbach, M.L.: Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16(7), 430–439 (2015)CrossRefGoogle Scholar
  4. 4.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)CrossRefGoogle Scholar
  5. 5.
    Donoho, D.L., Tsaig, Y.: Fast solution of-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Enatsu, R., Piao, Z., OConnor, T., Horning, K., Mosher, J., Burgess, R., Bingaman, W., Nair, D.: Cortical excitability varies upon ictal onset patterns in neocortical epilepsy: a cortico-cortical evoked potential study. Clin. Neurophysiol. 123(2), 252–260 (2012)CrossRefGoogle Scholar
  7. 7.
    Friston, K.J.: Functional and effective connectivity: a review. Brain Connect. 1(1), 13–36 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Guan, Z.H., Liu, F., Li, J., Wang, Y.W.: Chaotification of complex networks with impulsive control. Chaos: Interdisc. J. Nonlinear Sci. 22(2), 023137 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Snead, O.C.: Basic mechanisms of generalized absence seizures. Annals. Neurol. 37(2), 146–157 (1995)CrossRefGoogle Scholar
  10. 10.
    Jefferys, J.G.: Advances in understanding basic mechanisms of epilepsy and seizures. Seizure 19(10), 638–646 (2010)CrossRefGoogle Scholar
  11. 11.
    Keller, C.J., Honey, C.J., Entz, L., Bickel, S., Groppe, D.M., Toth, E., Ulbert, I., Lado, F.A., Mehta, A.D.: Corticocortical evoked potentials reveal projectors and integrators in human brain networks. J. Neurosci. 34(27), 9152–9163 (2014)CrossRefGoogle Scholar
  12. 12.
    Keller, C.J., Honey, C.J., Mégevand, P., Entz, L., Ulbert, I., Mehta, A.D.: Mapping human brain networks with cortico-cortical evoked potentials. Phil. Trans. R. Soc. B 369(1653), 20130528 (2014)CrossRefGoogle Scholar
  13. 13.
    Kim, D.W., Kim, H.K., Lee, S.K., Chu, K., Chung, C.K.: Extent of neocortical resection and surgical outcome of epilepsy: intracranial EEG analysis. Epilepsia 51(6), 1010–1017 (2010)CrossRefGoogle Scholar
  14. 14.
    Kreuz, T.: Measures of neuronal signal synchrony. Scholarpedia 6(12), 11922 (2011). (Revision 152249)CrossRefGoogle Scholar
  15. 15.
    Lega, B., Dionisio, S., Flanigan, P., Bingaman, W., Najm, I., Nair, D., Gonzalez-Martinez, J.: Cortico-cortical evoked potentials for sites of early versus late seizure spread in stereoelectroencephalography. Epilepsy Res. 115, 17–29 (2015)CrossRefGoogle Scholar
  16. 16.
    Letzen, J.E., Craggs, J.G., Perlstein, W.M., Price, D.D., Robinson, M.E.: Functional connectivity of the default mode network and its association with pain networks in irritable bowel patients assessed via lidocaine treatment. J. Pain 14(10), 1077–1087 (2013)CrossRefGoogle Scholar
  17. 17.
    Liu, J., Ji, S., Ye, J., et al.: SLEP: sparse learning with efficient projections. Ariz. State Univ. 6, 491 (2009)Google Scholar
  18. 18.
    Nathan, S.S., Sinha, S.R., Gordon, B., Lesser, R.P., Thakor, N.V.: Determination of current density distributions generated by electrical stimulation of the human cerebral cortex. Electroencephalogr. Clin. Neurophysiol. 86(3), 183–192 (1993)CrossRefGoogle Scholar
  19. 19.
    Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Otti, A., Guendel, H., Henningsen, P., Zimmer, C., Noll-Hussong, M.: Functional network connectivity of pain-related resting state networks in somatoform pain disorder: an exploratory fMRI study. J. Psychiatry Neurosci.: JPN 38(1), 57 (2013)CrossRefGoogle Scholar
  21. 21.
    Sporns, O.: Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15(3), 247–262 (2013)Google Scholar
  22. 22.
    Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1(4), e42 (2005)CrossRefGoogle Scholar
  23. 23.
    Uddin, L.Q., Clare Kelly, A., Biswal, B.B., Xavier Castellanos, F., Milham, M.P.: Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum. Brain Mapp. 30(2), 625–637 (2009)CrossRefGoogle Scholar
  24. 24.
    Vecchio, F., Miraglia, F., Curcio, G., Della Marca, G., Vollono, C., Mazzucchi, E., Bramanti, P., Rossini, P.M.: Cortical connectivity in fronto-temporal focal epilepsy from EEG analysis: a study via graph theory. Clin. Neurophysiol. 126(6), 1108–1116 (2015)CrossRefGoogle Scholar
  25. 25.
    Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 226–235. ACM (2003)Google Scholar
  26. 26.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  27. 27.
    Wright, S.J., Nowak, R.D., Figueiredo, M.A.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yaffe, R.B., Borger, P., Megevand, P., Groppe, D.M., Kramer, M.A., Chu, C.J., Santaniello, S., Meisel, C., Mehta, A.D., Sarma, S.V.: Physiology of functional and effective networks in epilepsy. Clin. Neurophysiol. 126(2), 227–236 (2015)CrossRefGoogle Scholar
  29. 29.
    Ye, J., Liu, J.: Sparse methods for biomedical data. ACM SIGKDD Explor. Newsl. 14(1), 4–15 (2012)CrossRefGoogle Scholar
  30. 30.
    Zhou, J., Seeley, W.W.: Network dysfunction in Alzheimers disease and frontotemporal dementia: implications for psychiatry. Biol. Psychiatry 75(7), 565–573 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Feng Liu
    • 1
    Email author
  • Wei Xiang
    • 2
  • Shouyi Wang
    • 1
  • Bradley Lega
    • 3
  1. 1.Department of Industrial, Manufacturing and Systems EngineeringUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Department of Computer Science and EngineeringUniversity of Texas at ArlingtonArlingtonUSA
  3. 3.Neurological SurgeryUniversity of Texas SouthwesternDallasUSA

Personalised recommendations