Analogical Transfer in RDFS, Application to Cocktail Name Adaptation

  • Nadia Kiani
  • Jean LieberEmail author
  • Emmanuel Nauer
  • Jordan Schneider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9969)


This paper deals with analogical transfer in the framework of the representation language RDFS. The application of analogical transfer to case-based reasoning consists in reusing the problem-solution dependency to the context of the target problem; thus it is a general approach to adaptation. RDFS is a representation language that is a standard of the semantic Web; it is based on RDF, a graphical representation of data, completed by an entailment relation. A dependency is therefore represented as a graph representing complex links between a problem and a solution, and analogical transfer uses, in particular, RDFS entailment. This research work is applied (and inspired from) the issue of cocktail name adaptation: given a cocktail and a way this cocktail is adapted by changing its ingredient list, how can the cocktail name be modified?


Adaptation Analogical transfer RDFS Cocktail name adaptation 


  1. 1.
    Carbonell, J.G.: Derivational analogy: a theory of reconstructive problem solving and expertise acquisition. In: Machine Learning, vol. 2, pp. 371–392. Morgan Kaufmann Inc. (1986)Google Scholar
  2. 2.
    Ceci, F., Weber, R.O., Gonçalves, A.L., Pacheco, R.C.S.: Adapting sentiments with context. In: Hüllermeier, E., Minor, M. (eds.) ICCBR 2015. LNCS (LNAI), vol. 9343, pp. 44–59. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24586-7_4 CrossRefGoogle Scholar
  3. 3.
    Cojan, J., Lieber, J.: Applying belief revision to case-based reasoning. In: Prade, H., Richard, G. (eds.) Computational Approaches to Analogical Reasoning: Current Trends. Studies in Computational Intelligence, vol. 548, pp. 133–161. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  4. 4.
    Cordier, A., Dufour-Lussier, V., Lieber, J., Nauer, E., Badra, F., Cojan, J., Gaillard, E., Infante-Blanco, L., Molli, P., Napoli, A., Skaf-Molli, H.: Taaable: a case-based system for personalized cooking. In: Montani, S., Jain, L.C. (eds.) Successful Case-based Reasoning Applications-2. Studies in Computational Intelligence, vol. 494, pp. 121–162. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Gaillard, E., Infante-Blanco, L., Lieber, J., Nauer, E.: Tuuurbine: a generic CBR engine over RDFS. In: Case-Based Reasoning Research and Development, Cork, Ireland, vol. 8765, pp. 140–154, September 2014Google Scholar
  6. 6.
    Gentner, D.: Structure-mapping: a theoretical framework for analogy. Cogn. Sci. 7(2), 155–170 (1983)CrossRefGoogle Scholar
  7. 7.
    Jalali, V., Leake, D.: CBR meets big data: a case study of large-scale adaptation rule generation. In: Hüllermeier, E., Minor, M. (eds.) ICCBR 2015. LNCS (LNAI), vol. 9343, pp. 181–196. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24586-7_13 CrossRefGoogle Scholar
  8. 8.
    Melis, E., Lieber, J., Napoli, A.: Reformulation in case-based reasoning. In: Smyth, B., Cunningham, P. (eds.) Fourth European Workshop on Case-Based Reasoning, EWCBR-98. LNCS, vol. 1488, pp. 172–183. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Müller, G., Bergmann, R.: Workflow streams: a means for compositional adaptation in process-oriented CBR. In: Lamontagne, L., Plaza, E. (eds.) Case-Based Reasoning Research and Development, ICCBR-2014. Lecture Notes in Artifichal Intelligence, vol. 8765, pp. 315–329. Springer, Cork, Ireland (2014)Google Scholar
  10. 10.
    Müller, G., Bergmann, R.: CookingCAKE: a framework for the adaptation of cooking recipes represented as workflows (2015)Google Scholar
  11. 11.
    Riesbeck, C.K., Schank, R.C.: Inside Case-Based Reasoning. Lawrence Erlbaum Associates Inc., Hillsdale (1989)Google Scholar
  12. 12.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison Wesley, Reading (1984)zbMATHGoogle Scholar
  13. 13.
    Tiddi, I., d’Aquin, M., Motta, E.: Learning to assess linked data relationships using genetic programming. In: Proceedings of the 15th International Semantic Web Conference (ISWC). Springer (2016)Google Scholar
  14. 14.
    Winston, P.H.: Learning and reasoning by analogy. Commun. ACM 23(12), 689–703 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Nadia Kiani
    • 1
  • Jean Lieber
    • 2
    • 3
    • 4
    Email author
  • Emmanuel Nauer
    • 2
    • 3
    • 4
  • Jordan Schneider
    • 1
  1. 1.Université de Lorraine, SCA Master (Cognitive Sciences and Their Applications)NancyFrance
  2. 2.Université de Lorraine, LORIAVandœuvre-lès-NancyFrance
  3. 3.CNRSVandœuvre-lès-NancyFrance
  4. 4.InriaVillers-lès-NancyFrance

Personalised recommendations