Quality of Service and Message Aggregation in Delay-Tolerant Sensor Internetworks

  • Edward J. BirraneIIIEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 148)


We present traffic-shaping and message-aggregation algorithms that provide reservation-based quality-of-service mechanisms for delay-tolerant internetworks utilizing graph-based routing protocols. We define a Traffic Shaping with Contacts (TSC) method that alters the edge weights in a graph structure to represent service level specifications, rather than physical capacity. This adjustment allows existing routing mechanisms to implement bandwidth reservations without additional processing at the node. We define a Payload Aggregation and Fragmentation (PAF) algorithm that calculates preferred payload sizes over traffic-shaping contacts. PAF aggregates too-small payloads together and fragments too-large payloads to optimize contact capacities. Unlike other mechanisms, TSC/PAF are unaffected by heterogeneous physical, data-link, and transport layer protocols across an internetwork and require only minor modifications to internetwork-layer graph-routing frameworks. Simulation results show that together TSC/PAF reduce the number of messages in a sensor internetwork by 43 % while increasing the goodput of the network by 63 % over standard graph-routing techniques.


Delay-tolerant networking Congestion modeling Traffic prediction Quality of service Fragmentation Aggregation 


  1. 1.
    Cerf, V., et al.: Delay-Tolerant Networking Architecture, RFC4838, April 2007Google Scholar
  2. 2.
    Rationale, Scenarios, and Requirements for DTN in Space, Draft Informational Report, CCSDS 734.0-G-0, December 2009Google Scholar
  3. 3.
    Birrane, E.: Building routing overlays in disrupted networks: inferring contacts in challenged sensor internetworks. Int. J. Ad Hoc Ubiquitous Comput. (IJAHUC) 11(2–3), 139–156 (2012). doi: 10.1504/IJAHUC.2012.050271. Special issue on Algorithms and Protocols for Opportunistic and Delay Tolerant NetworksGoogle Scholar
  4. 4.
    Marchese, M.: Quality of Service Over Heterogeneous Networks. Wiley, Chichester (2007)CrossRefGoogle Scholar
  5. 5.
    Grossman, D.: New Terminology and Clarifications for Diffserv, RFC3260, April 2002Google Scholar
  6. 6.
    Dugeon, O., End to end quality of service over heterogeneous networks: EuQoS. In: Proceedings of NetCon 2005, Lanion, France, November 2005Google Scholar
  7. 7.
    Yan, X., Şekercioğlu, Y.A., Narayanan, S.: A survey of vertical handover decision algorithms in fourth generation heterogeneous wireless networks. Comput. Netw. 54(11–2), 1848–1863 (2010). doi: 10.1016/j.comnet.2010.02.006. ISSN: 1389-1286CrossRefzbMATHGoogle Scholar
  8. 8.
    Demmer, M.: DTNServ: a case for service classes in delay tolerant networks. In: 4th International Conference on Intelligent Computer Communication and Processing, ICCP 2008, pp. 177–184, 28–30 August 2008Google Scholar
  9. 9.
    Caini, C., Cruickshank, H., Farrell, S., Marchese, M.: Delay- and disruption-tolerant networking (DTN): an alternative solution for future satellite networking applications. Proc. IEEE 99(11), 1980–1997 (2011)CrossRefGoogle Scholar
  10. 10.
    Tsao, P., Wang, S.-Y., Gao, J.L.: Space QoS framework over a delay/disruption tolerant network. In: 2010 IEEE Aerospace Conference, pp. 1–5, 6–13 March 2010. doi: 10.1109/AERO.2010.5446951
  11. 11.
    Caini, C., Firrincieli, R., Cruickshank, H., Marchese, M.: Satellite communications: from PEPs to DTN. In: 2010 5th Advanced Satellite Multimedia Systems Conference (Asma) and the 11th Signal Processing for Space Communications Workshop (SPSC), pp. 62–67, 13–15 September 2010Google Scholar
  12. 12.
    Fall, K., Farrell, S.: DTN: an architectural retrospective. IEEE J. Sel. Areas Commun. 26(5), 828–836 (2008)CrossRefGoogle Scholar
  13. 13.
    Magaia, N., Pereira, P.R., Casaca, A., Rodrigues, J.J.P.C., Dias, J.A., Isento, J.N., Cervello-Pastor, C., Gallego, J.: Bundles fragmentation in vehicular delay-tolerant networks. In: 2011 7th EURO-NGI Conference on Next Generation Internet (NGI), pp. 1–6, 27–29 June 2011. doi: 10.1109/NGI.2011.5985945
  14. 14.
    Ivancic, W.D., Paulsen, P., Stewart, D., Eddy, W., McKim, J., Taylor, J., Lynch, S., Heberle, J., Northam, J., Jackson, C., Wood, L.: Large file transfers from space using multiple ground terminals and delay-tolerant networking. In: 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010), pp. 1–6, 6–10 December 2010. doi: 10.1109/GLOCOM.2010.5683304
  15. 15.
    Pitkanen, M., Keranen, A., Ott, J.: Message fragmentation in opportunistic DTNs. In: 2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2008, pp. 1–7, 23–26 June 2008. doi: 10.1109/WOWMOM.2008.4594892
  16. 16.
    Burleigh, S., Scott, K.: Bundle Protocol Specification, November 2007.
  17. 17.
    Sekhar, A., et al.: MARVIN: Movement-Aware Routing oVer Interplanetary Networks. In: IEEE SECON (2004)Google Scholar
  18. 18.
    Wyatt, J., et al.: Disruption tolerant networking flight validation experiment on nasa’s epoxi mission. In: 2009 First International Conference on Advances in Satellite and Space Communications, pp. 187–196 (2009)Google Scholar
  19. 19.
    Caini, C., Firrincieli, R.: Application of contact graph routing to LEO satellite DTN communications. In: 2012 IEEE International Conference on Communications (ICC), pp. 3301–3305, 10–15 June 2012Google Scholar
  20. 20.
    Segui, J., Jennings, E., Burleigh, S.: Enhancing contact graph routing for delay tolerant space networking. In: IEEE GLOBECOM (2011)Google Scholar
  21. 21.
    Burleigh, S.: Contact Graph Routing: draft- burleigh-dtnrg-cgr-01, July 2010.
  22. 22.
    Birrane, E.: Improving graph-based overlay routing in delay tolerant networks. In: Proceedings of IFIP Wireless Days (2011)Google Scholar
  23. 23.
    Fréville, A.: The multidimensional 0–1 knapsack problem: an overview. Eur. J. Oper. Res. 155(1), 1–21 (2004). doi: 10.1016/S0377-2217(03)00274-1. ISSN: 0377-2217MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5(2), 266–288 (1957)MathSciNetCrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

Authors and Affiliations

  1. 1.Space DepartmentJohns Hopkins University Applied Physics LaboratoryLaurelUSA

Personalised recommendations