Advertisement

Quality of Service and Message Aggregation in Delay-Tolerant Sensor Internetworks

  • Edward J. BirraneIIIEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 148)

Abstract

We present traffic-shaping and message-aggregation algorithms that provide reservation-based quality-of-service mechanisms for delay-tolerant internetworks utilizing graph-based routing protocols. We define a Traffic Shaping with Contacts (TSC) method that alters the edge weights in a graph structure to represent service level specifications, rather than physical capacity. This adjustment allows existing routing mechanisms to implement bandwidth reservations without additional processing at the node. We define a Payload Aggregation and Fragmentation (PAF) algorithm that calculates preferred payload sizes over traffic-shaping contacts. PAF aggregates too-small payloads together and fragments too-large payloads to optimize contact capacities. Unlike other mechanisms, TSC/PAF are unaffected by heterogeneous physical, data-link, and transport layer protocols across an internetwork and require only minor modifications to internetwork-layer graph-routing frameworks. Simulation results show that together TSC/PAF reduce the number of messages in a sensor internetwork by 43 % while increasing the goodput of the network by 63 % over standard graph-routing techniques.

Keywords

Delay-tolerant networking Congestion modeling Traffic prediction Quality of service Fragmentation Aggregation 

References

  1. 1.
    Cerf, V., et al.: Delay-Tolerant Networking Architecture, RFC4838, April 2007Google Scholar
  2. 2.
    Rationale, Scenarios, and Requirements for DTN in Space, Draft Informational Report, CCSDS 734.0-G-0, December 2009Google Scholar
  3. 3.
    Birrane, E.: Building routing overlays in disrupted networks: inferring contacts in challenged sensor internetworks. Int. J. Ad Hoc Ubiquitous Comput. (IJAHUC) 11(2–3), 139–156 (2012). doi: 10.1504/IJAHUC.2012.050271. Special issue on Algorithms and Protocols for Opportunistic and Delay Tolerant NetworksGoogle Scholar
  4. 4.
    Marchese, M.: Quality of Service Over Heterogeneous Networks. Wiley, Chichester (2007)CrossRefGoogle Scholar
  5. 5.
    Grossman, D.: New Terminology and Clarifications for Diffserv, RFC3260, April 2002Google Scholar
  6. 6.
    Dugeon, O., et.al.: End to end quality of service over heterogeneous networks: EuQoS. In: Proceedings of NetCon 2005, Lanion, France, November 2005Google Scholar
  7. 7.
    Yan, X., Şekercioğlu, Y.A., Narayanan, S.: A survey of vertical handover decision algorithms in fourth generation heterogeneous wireless networks. Comput. Netw. 54(11–2), 1848–1863 (2010). doi: 10.1016/j.comnet.2010.02.006. ISSN: 1389-1286CrossRefzbMATHGoogle Scholar
  8. 8.
    Demmer, M.: DTNServ: a case for service classes in delay tolerant networks. In: 4th International Conference on Intelligent Computer Communication and Processing, ICCP 2008, pp. 177–184, 28–30 August 2008Google Scholar
  9. 9.
    Caini, C., Cruickshank, H., Farrell, S., Marchese, M.: Delay- and disruption-tolerant networking (DTN): an alternative solution for future satellite networking applications. Proc. IEEE 99(11), 1980–1997 (2011)CrossRefGoogle Scholar
  10. 10.
    Tsao, P., Wang, S.-Y., Gao, J.L.: Space QoS framework over a delay/disruption tolerant network. In: 2010 IEEE Aerospace Conference, pp. 1–5, 6–13 March 2010. doi: 10.1109/AERO.2010.5446951
  11. 11.
    Caini, C., Firrincieli, R., Cruickshank, H., Marchese, M.: Satellite communications: from PEPs to DTN. In: 2010 5th Advanced Satellite Multimedia Systems Conference (Asma) and the 11th Signal Processing for Space Communications Workshop (SPSC), pp. 62–67, 13–15 September 2010Google Scholar
  12. 12.
    Fall, K., Farrell, S.: DTN: an architectural retrospective. IEEE J. Sel. Areas Commun. 26(5), 828–836 (2008)CrossRefGoogle Scholar
  13. 13.
    Magaia, N., Pereira, P.R., Casaca, A., Rodrigues, J.J.P.C., Dias, J.A., Isento, J.N., Cervello-Pastor, C., Gallego, J.: Bundles fragmentation in vehicular delay-tolerant networks. In: 2011 7th EURO-NGI Conference on Next Generation Internet (NGI), pp. 1–6, 27–29 June 2011. doi: 10.1109/NGI.2011.5985945
  14. 14.
    Ivancic, W.D., Paulsen, P., Stewart, D., Eddy, W., McKim, J., Taylor, J., Lynch, S., Heberle, J., Northam, J., Jackson, C., Wood, L.: Large file transfers from space using multiple ground terminals and delay-tolerant networking. In: 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010), pp. 1–6, 6–10 December 2010. doi: 10.1109/GLOCOM.2010.5683304
  15. 15.
    Pitkanen, M., Keranen, A., Ott, J.: Message fragmentation in opportunistic DTNs. In: 2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2008, pp. 1–7, 23–26 June 2008. doi: 10.1109/WOWMOM.2008.4594892
  16. 16.
    Burleigh, S., Scott, K.: Bundle Protocol Specification, November 2007. http://tools.ietf.org/html/rfc5050
  17. 17.
    Sekhar, A., et al.: MARVIN: Movement-Aware Routing oVer Interplanetary Networks. In: IEEE SECON (2004)Google Scholar
  18. 18.
    Wyatt, J., et al.: Disruption tolerant networking flight validation experiment on nasa’s epoxi mission. In: 2009 First International Conference on Advances in Satellite and Space Communications, pp. 187–196 (2009)Google Scholar
  19. 19.
    Caini, C., Firrincieli, R.: Application of contact graph routing to LEO satellite DTN communications. In: 2012 IEEE International Conference on Communications (ICC), pp. 3301–3305, 10–15 June 2012Google Scholar
  20. 20.
    Segui, J., Jennings, E., Burleigh, S.: Enhancing contact graph routing for delay tolerant space networking. In: IEEE GLOBECOM (2011)Google Scholar
  21. 21.
    Burleigh, S.: Contact Graph Routing: draft- burleigh-dtnrg-cgr-01, July 2010. http://tools.ietf.org/html/draft-burleigh-dtnrg-cgr-01
  22. 22.
    Birrane, E.: Improving graph-based overlay routing in delay tolerant networks. In: Proceedings of IFIP Wireless Days (2011)Google Scholar
  23. 23.
    Fréville, A.: The multidimensional 0–1 knapsack problem: an overview. Eur. J. Oper. Res. 155(1), 1–21 (2004). doi: 10.1016/S0377-2217(03)00274-1. ISSN: 0377-2217MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5(2), 266–288 (1957)MathSciNetCrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

Authors and Affiliations

  1. 1.Space DepartmentJohns Hopkins University Applied Physics LaboratoryLaurelUSA

Personalised recommendations