Advertisement

Adaptive Methods for Managing Heterogeneity in Smart Spaces

  • Mikko Asikainen
  • Lauri Väätäinen
  • Aleksi Suomalainen
  • Miika Toivanen
  • Keijo Haataja
  • Pekka Toivanen
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 170)

Abstract

In this paper we discuss our work to manage heterogeneity of devices, protocols and software in smart spaces by using adaptive methods to combat incompatibility issues. We present our experimental prototype which combines a telehealth system with the assisted living functionalities of a smart home, which we have developed to test our concepts. The result of this adaptivity study is a service repository which enables systems to match collections of sensors and actuators to loosely coupled services which are downloaded and activated in runtime without human interference.

Keywords

Adaptivity Loose coupling Middleware Service repository Smart spaces 

References

  1. 1.
    Jihua, Y., Qi, X., Yaohong, X., Chunlan, W.: The research of an adaptive smart home system. In: 2012 7th International Conference on Computer Science and Education (ICCSE), pp. 882–887, 14–17 July 2012Google Scholar
  2. 2.
    Cook, D.J., et al.: Learning to control a smart home environment. Innovative Appl. Artif. Intell. (2003)Google Scholar
  3. 3.
    Sungjoon, C., Eunwoo, K., Songhwai, O.: Human behavior prediction for smart homes using deep learning. In: 2013 IEEE RO-MAN, pp. 173–179, 26–29 August 2013Google Scholar
  4. 4.
    El Kaed, C., Denneulin, Y., Ottogalli, F.: Dynamic service adaptation for plug and play device interoperability. In: 2011 7th International Conference on Network and Service Management (CNSM), pp. 1–9, 24–28 October 2011Google Scholar
  5. 5.
    Tinghuai, M., Yong-Deak, K., Qiang, M., Meili, T., Weican, Z.: Context-aware implementation based on CBR for smart home. In: 2005 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, (WiMob 2005), vol. 4, pp. 112–115, 22–24 August 2005Google Scholar
  6. 6.
    Papadopoulos, N., Meliones, A., Economou, D., Karras, I., Liverezas, I.: A connected home platform and development framework for smart home control applications. In: 2009 7th IEEE International Conference on Industrial Informatics, INDIN 2009, pp. 402–409, 23–26 June 2009Google Scholar
  7. 7.
    Väänänen, A., Haataja, K., Asikainen, M., Jantunen, I., Toivanen, P.: Mobile health applications: a comparative analysis and a novel mobile health platform. In: 5th International Conference on Sensor Systems and Software, S-CUBE 2014 (2014)Google Scholar
  8. 8.
  9. 9.
    Design, Monitoring and Operation of Adaptive Networked Embedded Systems (DEMANES). www.demanes.eu
  10. 10.
    Mega Electronics Ltd. http://www.megaemg.com
  11. 11.
  12. 12.
    Z-Wave Alliance. http://z-wavealliance.org/
  13. 13.
    Uniform Resource Names (URN) Namespace Definition Mechanisms, RFC3406. http://tools.ietf.org/html/rfc3406
  14. 14.
    Algorithms, Design Methods, and Many-core Execution Platform for Low-Power Massive Data-Rate Video and Image Processing (ALMARVI). http://www.almarvi.eu/

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

Authors and Affiliations

  • Mikko Asikainen
    • 1
  • Lauri Väätäinen
    • 1
  • Aleksi Suomalainen
    • 1
  • Miika Toivanen
    • 1
  • Keijo Haataja
    • 1
  • Pekka Toivanen
    • 1
  1. 1.School of Computing Kuopio CampusUniversity of Eastern FinlandKuopioFinland

Personalised recommendations