Strain Calibration of Substrate-Free FBG Sensors at Cryogenic Temperature

  • Venkataraman Narayanan Venkatesan
  • Klaus-Peter Weiss
  • Ram Prakash Bharti
  • Holger Neumann
  • Rajinikumar Ramalingam
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 170)

Abstract

Strain calibration measurements are performed for acrylate coated, substrate-free fiber Bragg grating (FBG) sensors at room temperature of 298 K and cryogenic temperature of 77 K. A 1550 nm Bragg wavelength (λB) FBG sensor, with its sensing part not being bonded to any surface, is subjected to axial strain using MTS25 tensile machine available at Cryogenic Material tests Karlsruhe (CryoMaK), KIT. The Bragg wavelength shift (ΔλB) versus induced strain (ε) is regressed with a linear polynomial function and the strain sensitivity obtained is found to be 0.9 pm/µε at both the temperatures, verifying that the FBG strain sensitivity is independent of temperature.

Keywords

Fiber Bragg gratings (FBG) Cryogenic applications Strain sensitivity Strain calibration 

References

  1. 1.
    Rao, Y.J.: Recent progress in applications of in-fibre Bragg grating sensors. Opt. Lasers Eng. 31(4), 297–324 (1999)CrossRefGoogle Scholar
  2. 2.
    Othonos, A., Kalli, K.: Fiber Bragg Gratings – Fundamentals and Application in Telecommunications and Sensing. Artech House Optoelectronics Library, Boston (1999)Google Scholar
  3. 3.
    Iniewski, K.: Smart Sensors for Industrial Applications. Taylor & Francis Group, Boca Raton (2013)Google Scholar
  4. 4.
    Wu, M.-C.: Simultaneous temperature and strain sensing for cryogenic applications using dual-wavelength fiber Bragg gratings. In: Proceedings of SPIE 5191, pp. 208–213 (2003)Google Scholar
  5. 5.
    Ramalingam, R.: Fiber Bragg grating sensors for localized strain measurements at low temperature and in high magnetic field. In: Proceedings of AIP Conference, vol. 1218, no. 1, pp. 1197–1204 (2010)Google Scholar
  6. 6.
    Ramalingam, R., Neumann, H.: Fiber Bragg grating-based temperature distribution evaluation of multilayer insulations between 300 K–77 K. IEEE Sens. J. 11(4), 1095–1100 (2011)CrossRefGoogle Scholar
  7. 7.
    Ramalingam, R., Kläser, M., Schneider, T., Neumann, H.: Fiber Bragg grating sensors for strain measurement at multiple points in an NbTi superconducting sample coil. IEEE Sens. J. 14(3), 873–881 (2014)CrossRefGoogle Scholar
  8. 8.
    Bharathwaj, V., Markan, A., Atrey, M., Neumann, H., Ramalingam, R.: Fiber Bragg gratings for distributed cryogenic temperature measurement in a tube in tube helically coiled heat exchanger. In: IEEE sensors 2014, Valencia, Spain, pp. 1535–1538 (2014)Google Scholar
  9. 9.
    Ramalingam, R., Nast, R., Neumann, H.: Fiber Bragg grating sensors for distributed torsional strain measurements in a (RE) BCO tape. IEEE Sens. J. 15(4), 2023–2030 (2015)CrossRefGoogle Scholar
  10. 10.
    Li, J., Neumann, H., Ramalingam, R.: Design, fabrication, and testing of fiber Bragg grating sensors for cryogenic long-range displacement measurement. Cryogenics 68, 36–43 (2015). ISSN 0011-2275CrossRefGoogle Scholar
  11. 11.
    Kashyap, R.: Fiber Bragg Gratings. Academic Press, San Diego (1999)Google Scholar
  12. 12.
    Othonos, A.: Fiber Bragg gratings. Rev. Sci. Instrum. 68, 4309–4341 (1997)CrossRefGoogle Scholar
  13. 13.
    Roths, J., Andrejevic, G., Kuttler, R., Süsser, M.: Calibration of fiber Bragg cryogenic temperature sensors. In: 18th International Optical Fiber Sensors Conference. Optical Society of America (2006)Google Scholar
  14. 14.
    James, S.W., Tatam, R.P., Twin, A., Morgan, M., Noonan, P.: Strain response of fibre Bragg grating sensors at cryogenic temperatures. Measur. Sci. Technol. 13, 1535–1539 (2002)CrossRefGoogle Scholar
  15. 15.
    Roths, J., Jülich, F.: Determination of strain sensitivity of free fiber Bragg gratings. In: Proceedings of SPIE 7003, p. 700308 (2008)Google Scholar
  16. 16.
    Bagrets, N., Weiss, E., Westenfelder, S., Weiss, K.-P.: Cryogenic test facility CryoMaK. IEEE Trans. Appl. Supercond. 22(3), 9501204 (2012)CrossRefGoogle Scholar
  17. 17.
    Nyilas, A.: Strain sensing systems tailored for tensile measurement of fragile wires. Supercond. Sci. Technol. 18, S409–S415 (2005)CrossRefGoogle Scholar
  18. 18.
    Nyilas, A.: Transducers for sub-micron displacement measurements at cryogenic temperatures. In: Advances in Cryogenic Engineering: Transactions of the Cryogenic Materials Conference – ICMC, vol. 52 (2006)Google Scholar
  19. 19.

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

Authors and Affiliations

  • Venkataraman Narayanan Venkatesan
    • 1
    • 2
  • Klaus-Peter Weiss
    • 1
  • Ram Prakash Bharti
    • 2
  • Holger Neumann
    • 1
  • Rajinikumar Ramalingam
    • 1
  1. 1.Institute for Technical Physics (ITEP)Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  2. 2.Department of Chemical EngineeringIndian Institute of Technology (IIT) RoorkeeRoorkeeIndia

Personalised recommendations