Smoothed Particle Hydrodynamics for Numerical Predictions of Primary Atomization

Conference paper

Abstract

A code framework based on the Smoothed Particle Hydrodynamics (SPH) method has been used to investigate the liquid disintegration processes of an air-assisted atomizer. As the flow physics includes spatial and temporal scales which cover at least 4 orders of magnitude, the use of HPC resources is indispensable. The application of the SPH method is rather new to computational fluid dynamics (CFD). We therefore compare our in-house code to established CFD tools in order to assess the computational performance as well as the quality the physical results. It can be shown, that SPH is able to outperform commonly used grid based methods concerning the scalability behavior as well as the absolute computing speed. The three dimensional test case to be presented consists of 1.2 billion particles. The simulation has been run on the ForHLR I cluster, where 2560 cores have been used for 60 days. The simulation is the most detailed numerical investigation of a prefilmer based atomizer and one of the largest SPH multi-phase flow simulations ever. It did capture the experimentally observed bag breakup regime with good agreement of the spatial liquid disintegration and the breakup time scales.

References

  1. 1.
    Adami, S., Hu, X.Y., Adams, N.A.: A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J. Comput. Phys. 229 (13), 5011–5021 (2010)CrossRefMATHGoogle Scholar
  2. 2.
    Bendifallah, Z., Jalby, W., Noudohouenou, J., Oseret, E., Palomares, V., Rubial, A.C.: PAMDA: performance assessment using MAQAO toolset and differential analysis. In: Tools for High Performance Computing 2013, pp. 107–127. Springer, Berlin/New York (2014)Google Scholar
  3. 3.
    Brackbill, J.U., Kothe, D.B.: Dynamical Modeling of Surface Tension. NASA Conference Publication, pp. 693–700 (1996)Google Scholar
  4. 4.
    Braun, S., Höfler, C., Koch, R., Bauer, H.-J.: Modeling fuel injection in gas turbines using the meshless smoothed particle hydrodynamics method. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, pp. V01AT04A001-V01AT04A001. American Society of Mechanical Engineers, New York (2015)Google Scholar
  5. 5.
    Braun, S., Wieth, L., Koch, R., Bauer, H.-J.: Influence of trailing edge height on primary atomization: numerical studies applying the smoothed particle hydrodynamics (SPH) method. In: 13th International Conference on Liquid Atomization and Spray Systems, Taiwan (2015)Google Scholar
  6. 6.
    Braun, S., Krug, M., Wieth, L., Höfler, C. Koch, R., Bauer, H.-J.: Simulation of primary atomization: assessment of the smoothed particle hydrodynamics (SPH) method. In: 13th International Conference on Liquid Atomization and Spray Systems, Taiwan (2015)Google Scholar
  7. 7.
    Braun, S., Wieth, L., Koch, R., Bauer, H.-J.: A framework for permeable boundary conditions in SPH: inlet, outlet, periodicity. In: 10th International SPHERIC Workshop, Parma (2015)Google Scholar
  8. 8.
    Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 29 (4), 551–559 (1983)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gepperth, S., Guildenbecher, D., Koch, R., Bauer, H.J.: Pre-filming primary atomization: experiments and modeling. In: 23rd European Conference on Liquid Atomization and Spray Systems (ILASS-Europe 2010), Brno, Sept 2010, pp. 6–8Google Scholar
  10. 10.
    Gepperth, S., Müller, A., Koch, R., Bauer, H.-J.: Ligament and droplet characteristics in prefilming airblast atomization. In: International Conference on Liquid Atomization and Spray Systems (ICLASS), Heidelberg, Sept 2012, pp. 2–6Google Scholar
  11. 11.
    Gepperth, S., Koch, R., Bauer, H.-J.: Analysis and comparison of primary droplet characteristics in the near field of a prefilming airblast atomizer. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, pp. V01AT04A002-V01AT04A002. American Society of Mechanical Engineers, New York (2013)Google Scholar
  12. 12.
    Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181 (3), 375–389 (1977)CrossRefMATHGoogle Scholar
  13. 13.
    Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: a call graph execution profiler. ACM Sigplan Not. 17 (6), 120–126. ACM (1982)Google Scholar
  14. 14.
    Hu, X.Y., Adams, N.A.: An incompressible multi-phase SPH method. J. Comput. Phys. 227 (1), 264–278 (2007)CrossRefMATHGoogle Scholar
  15. 15.
    Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)CrossRefGoogle Scholar
  16. 16.
    Morris, J.P.: Simulating surface tension with smoothed particle hydrodynamics. Int. J. Numer. Methods Fluids 33, 333–353 (2000)CrossRefMATHGoogle Scholar
  17. 17.
    Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. ACM (JACM) 13 (4), 471–494 (1966)Google Scholar
  18. 18.
    Szewc, K., Pozorski, J., Minier, J.P.: Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method. Int. J. Numer. Methods Eng. 92 (4), 343–369 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institut für Thermische StrömungsmaschinenKarlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations