High-Pressure Real-Gas Jet and Throttle Flow as a Simplified Gas Injector Model Using a Discontinuous Galerkin Method

  • Fabian Hempert
  • Sebastian Boblest
  • Malte Hoffmann
  • Philipp Offenhäuser
  • Filip Sadlo
  • Colin W. Glass
  • Claus-Dieter Munz
  • Thomas Ertl
  • Uwe Iben
Conference paper

Abstract

Industrial devices such as gas injectors for automotive combustion engines operate at ever-increasing pressures and already today reach regimes beyond the ideal-gas approximation. Numerical simulations are an important part of the design process for such components. In this paper, we present a case study with a computational fluid dynamics code based on the discontinuous Galerkin spectral element method with a real-gas equation of state. We assess a high-pressure throttle and jet flow as a basic model of a gas injector. We apply a shock-capturing method to achieve a robust simulation, and a newly developed method to maintain high efficiency despite load imbalances introduced by the shock capturing. The results indicate a dynamic mass flow rate at different pressure ratios between the inlet and outlet.

Notes

Acknowledgements

This work is supported by the Federal Ministry of Education and Research (BMBF) within the HPC III project HONK “Industrialization of high-resolution numerical analysis of complex flow phenomena in hydraulic systems”. We also thank the Gauss Centre for Supercomputing (GCS) which provided us with the necessary computing resources on the Hazel Hen.

References

  1. 1.
    Adolf, M., Bargende, M., Becker, M., Bender, T.B., Budde, M., Ebner, A., Feix, F., Figer, G., Heine, P., Jauss, A., Kehler, T., Keskin, M.T., Köhler, E., Kufferath, A., Langer, W., Lejsek, D., Petersen, C., Philipp, U., Sarikaya, A., Sauerstein, R., Schaarschmidt, M., Schenk, A., Volz, P., Weiske, S., Winke, F., Winkelmann, H., Wollenhaupt, H., Wunderlich, K.: Natural gas and renewable methane for powertrains: future strategies for a climate-neutral mobility. In: Vehicle Development for Natural Gas and Renewable Methane, pp. 229–458. Springer, Cham (2016)Google Scholar
  2. 2.
    Allgeier, T., Haug, M., Frehoff, R., Weikert, M., Kröger, K., Langer, W., Förster, J., Thurso, J., Wörsinger, J.: Gasoline engine management: systems and components. In: Operation of Gasoline Engines on Natural Gas, pp. 122–135. Springer, Wiesbaden (2015)Google Scholar
  3. 3.
    Altmann, C., Beck, A.D., Hindenlang, F., Staudenmaier, M., Gassner, G.J., Munz, C.-D.: An efficient high performance parallelization of a discontinuous galerkin spectral element method. Lect. Notes Comput. Sci. 7686, 37–47 (2013)CrossRefGoogle Scholar
  4. 4.
    Beater, P.: Pneumatic Drives System Design, Modeling and Control. Springer, Berlin/London (2007)CrossRefGoogle Scholar
  5. 5.
    Bell, I.H., Wronski, J., Quoilin, S., Lemort, V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 53 (6), 2498–2508 (2014)CrossRefGoogle Scholar
  6. 6.
    Boblest, S., Hempert, F., Hoffmann, M., Offenhäuser, P., Sonntag, M., Sadlo, F., Glass, C.W., Munz, C.-D., Ertl, T., Iben, U.: Toward a discontinuous galerkin fluid dynamics framework for industrial applications. In: High Performance Computing in Science and Engineering’15, pp. 531–545. Springer, Berlin/New York (2016)Google Scholar
  7. 7.
    Bolemann, T., Üffinger, M., Sadlo, F., Ertl, T., Munz, C.-D.: Direct visualization of piecewise polynomial data. In: IDIHOM: Industrialization of High-Order Methods – A Top-Down Approach, pp. 535–550. Springer, Cham (2015)Google Scholar
  8. 8.
    de Wiart, C., Hillewaert, K.: Development and validation of a massively parallel high-order solver for DNS and LES of industrial flows. In: Kroll, N., Hirsch, C., Bassi, F., Johnston, C., Hillewaert, K. (eds.) IDIHOM: Industrialization of High-Order Methods – A Top-Down Approach. Volume 128 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 251–292. Springer, Cham (2015)Google Scholar
  9. 9.
    Dumbser, M., Iben, U., Munz, C.-D.: Efficient implementation of high order unstructured {WENO} schemes for cavitating flows. Comput. Fluids 86, 141–168 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hempert, F., Hoffmann, M., Iben, U., Munz, C.-D.: On the simulation of industrial gas dynamic applications with the discontinuous Galerkin spectral element method. J. Therm. Sci. 25 (3), 1–8 (2016)CrossRefGoogle Scholar
  11. 11.
    Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.-D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Huang, J., Crookes, R.: Assessment of simulated biogas as a fuel for the spark ignition engine. Fuel 77 (15), 1793–1801 (1998)CrossRefGoogle Scholar
  13. 13.
    Martin, T., Cohen, E., Kirby, R.M.: Direct isosurface visualization of hex-based high-order geometry and attribute representations. IEEE Trans. Vis. Comput. Graph. 18 (5), 753–766 (2012)CrossRefGoogle Scholar
  14. 14.
    McTaggart-Cowan, G., Mann, K., Huang, J., Singh, A., Patychuk, B., Zheng, Z.X., Munshi, S.: Direct injection of natural gas at up to 600 bar in a pilot-ignited heavy-duty engine. SAE Int. J. Engines 8 (3), 981–996 (2015)CrossRefGoogle Scholar
  15. 15.
    Nelson, B., Kirby, R.M., Haimes, R.: Gpu-based interactive cut-surface extraction from high-order finite element fields. IEEE Trans. Vis. Comput. Graph. 17 (12), 1803–1811 (2011)CrossRefGoogle Scholar
  16. 16.
    Nelson, B., Liu, E., Kirby, R.M., Haimes, R.: Elvis: a system for the accurate and interactive visualization of high-order finite element solutions. IEEE Trans. Vis. Comput. Graph. 18 (12), 2325–2334 (2012)CrossRefGoogle Scholar
  17. 17.
    Pagot, C., Osmari, D., Sadlo, F., Weiskopf, D., Ertl, T., Comba, J.: Efficient parallel vectors feature extraction from higher-order data. Comput. Graph. Forum 30 (3), 751–760 (2011)CrossRefGoogle Scholar
  18. 18.
    Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: Proceedings of the American Institute of Aeronautics and Astronautics, Keystone, vol. 112 (2006)Google Scholar
  19. 19.
    Sonntag, M., Munz, C.-D.: Shock capturing for discontinuous Galerkin methods using finite volume subcells. In: Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems. Volume 78 of Springer Proceedings in Mathematics & Statistics, pp. 945–953. Springer, Cham (2014)Google Scholar
  20. 20.
    M. Sonntag and C.-D. Munz. Efficient parallelization of a shock capturing for discontinuous galerkin methods using finite volume sub-cells. J. Sci. Comput. 1–28 (2016)Google Scholar
  21. 21.
    Vuorinen, V., Yu, J., Tirunagari, S., Kaario, O., Larmi, M., Duwig, C., Boersma, B.: Large-eddy simulation of highly underexpanded transient gas jets. Phys. Fluids (1994-present) 25 (1), 016101 (2013)Google Scholar
  22. 22.
    Westerhoff, M., Holtmeier, G.: Erdgas Die greifbare Chance. MTZ – Motortechnische Zeitschrift 77 (2), 8–13 (2016)CrossRefGoogle Scholar
  23. 23.
    Yu, J., Vuorinen, V., Kaario, O., Sarjovaara, T., Larmi, M.: Visualization and analysis of the characteristics of transitional underexpanded jets. Int. J. Heat Fluid Flow 44, 140–154 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Fabian Hempert
    • 3
  • Sebastian Boblest
    • 2
  • Malte Hoffmann
    • 1
  • Philipp Offenhäuser
    • 4
  • Filip Sadlo
    • 5
  • Colin W. Glass
    • 4
  • Claus-Dieter Munz
    • 1
  • Thomas Ertl
    • 2
  • Uwe Iben
    • 3
  1. 1.Institute for Aerodynamics and Gas dynamics, University of StuttgartStuttgartGermany
  2. 2.Visualization Research Center, University of StuttgartStuttgartGermany
  3. 3.Robert Bosch GmbH71272 RenningenGermany
  4. 4.High Performance Computing Center, University of Stuttgart70569 StuttgartGermany
  5. 5.Interdisciplinary Center for Scientific Computing, Heidelberg University69120 HeidelbergGermany

Personalised recommendations