An Adaptive Fuzzy Control Based on Harmony Search and Its Application to Optimization

  • Cinthia PerazaEmail author
  • Fevrier Valdez
  • Oscar Castillo
Part of the Studies in Computational Intelligence book series (SCI, volume 667)


This paper develops a new fuzzy harmony search algorithm (FHS) for solving optimization problems. FHS employs a novel method using fuzzy logic for adaptation of parameter the pitch adjustment (PArate) that enhances accuracy and convergence of harmony search (HS) algorithm. In this paper the impact of constant parameters on harmony search algorithm is discussed and a strategy for tuning these parameters is presented. The FHS algorithm has been successfully applied to various benchmarking optimization problems. Numerical results reveal that the proposed algorithm can find better solutions when compared to HS and other heuristic methods and is a powerful search algorithm for various benchmarking optimization problems.


Harmony search Fuzzy logic Dynamic parameter adaptation 



We would like to express our gratitude to CONACYT and Tijuana Institute of Technology for the facilities and resources granted for the development of this research.


  1. 1.
    Dexuan Z., Yanfeng G., Liqun G., Peifeng W.: A Novel Global Harmony Search Algorithm for Chemical Equation Balancing, In Computer Design and Applications (ICCDA), 2010 International Conference on, Vol. 2, IEEE (2010).Google Scholar
  2. 2.
    Eberhart R., Kennedy J.: A new optimizer using particle swarm theory, In Proceedings of the sixth international symposium on micro machine and human science Vol. 1, pp. 39-43., pp. 39–43, IEEE (1995).Google Scholar
  3. 3.
    Geem Z., Lee K.: A new meta-heuristic algorithm for continuous engineering optimization harmony search theory and practice, Computer methods in applied mechanics and engineering, pp. 3902-3933. Elsevier, Maryland, USA (2004).Google Scholar
  4. 4.
    Geem Z., Sim K., Parameter setting free harmony search algorithm, Applied Mathematics and Computation, pp. 3881-3889. Elsevier, Chung Ang, China (2010).Google Scholar
  5. 5.
    Geem Z.: Harmony search algorithms for structural design optimization, Studies in computational intelligence, Vol. 239, pp. 8–121. Springer, Heidelberg, Germany (2009).Google Scholar
  6. 6.
    Geem Z.: Music inspired harmony Search Algorithm theory and applications, Studies in computational intelligence pp. 8–121, Springer, Heidelberg, Germany (2009).Google Scholar
  7. 7.
    Hadi M., Mehmet A., Mashinchi M., Pedrycz W.:A Tabu Harmony Search Based Approach to Fuzzy Linear Regression, Fuzzy Systems, IEEE Transactions on, pp. 432-448. IEEE, New Jersey, USA (2011).Google Scholar
  8. 8.
    Mahamed G., Mahdavi M.: Global best harmony search, Applied Mathematics and Computation, pp. 1–14. Elsevier, Amsterdam, Holland (2008).Google Scholar
  9. 9.
    Mahdavi M., Fesanghary M., Damangir E.: An improved harmony search algorithm for solving optimization problems, applied Mathematics and Computation, pp. 1567–1579. Elsevier, Amsterdam, Holland (2007).Google Scholar
  10. 10.
    Manjarres D., Torres L., Lopez S., DelSer J, Bilbao M., Salcedo S., Geem Z.: A survey on applications of the harmony search algorithm, Engineering Applications of Artificial Intelligence, pp. 3–14, Elsevier, Amsterdam, Holland (2013).Google Scholar
  11. 11.
    Ochoa P., Castillo O., Soria J., Differential evolution with dynamic adaptation of parameters for the optimization of fuzzy controllers, Recent Advances on Hybrid Approaches for designing intelligent systems, pp. 275–288. Springer, Heidelberg, Germany (2013).Google Scholar
  12. 12.
    Olivas F., Melin P., Castillo O., et. al, Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic, pp, 2-11, Elsevier (2013).Google Scholar
  13. 13.
    Perez J., Valdez F., Castillo O.: A new Bat Algorithm with fuzzy logic for Dynamical Parameter adaptation and its applicability to fuzzy control design, Fuzzy Logic augmentation of nature inspired optimization metaheuristics, Volume 574, pp. 65-79, Springer (2015).Google Scholar
  14. 14.
    Sombra A., Valdez F., Melin P., Castillo O.: A new gravitational search algorithm using fuzzy logic to parameter adaptation. IEEE Congress on Evolutionary Computation, pp. 1068–1074 (2013).Google Scholar
  15. 15.
    Štefek A.: Benchmarking of heuristic optimization methods, Mechatronika 14th International Symposium, pp 68-71, IEEE (2011).Google Scholar
  16. 16.
    Valdez F.., Melin P., Castillo O.: Fuzzy Control of Parameters to Dynamically Adapt the PSO and GA Algorithms, Fuzzy Systems International Conference, pp. 1-8, IEEE, Barcelona, Spain (2010).Google Scholar
  17. 17.
    Wang C., Huang Y..: Self-adaptive harmony search algorithm for optimization, Expert Systems with Applications Volume 37, pp. 2826-2837, Elsevier (2010).Google Scholar
  18. 18.
    Yang X.: Nature Inspired Metaheuristic Algorithms, Second Edition, University of Cambridge, United Kingdom, pp 73-76, Luniver Press (2010).Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cinthia Peraza
    • 1
    Email author
  • Fevrier Valdez
    • 1
  • Oscar Castillo
    • 1
  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations