Advertisement

TIMESAT for Processing Time-Series Data from Satellite Sensors for Land Surface Monitoring

  • Lars EklundhEmail author
  • Per Jönsson
Chapter
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 20)

Abstract

The TIMESAT software package has been developed to enable monitoring of dynamic land surface processes using remotely sensed data. The monitoring capability is based on processing of time-series for each image pixel using either of three smoothing methods included in TIMESAT: asymmetric Gaussian fits, double-logistic fits, and Savitzky-Golay filtering. The methods have different properties and are suitable for a wide range of data with different character and noise properties. The fitting methods can be upper-envelope weighted and can take quality data into account. Based on the fitted functions, growing season parameters are then extracted (beginning, end, amplitude, slope, integral, etc.), and can be merged into images. TIMESAT has been used in a number of application fields: mapping of phenology and phenological variations; ecological disturbances; vegetation classification and characterization; agriculture applications; climate applications; and for improving remote sensing signal quality. Future developments of TIMESAT will include new methods to better handle long gaps in time-series, handling of irregular time sampling, improved smoothing methods, and incorporation of the spatial domain. These modifications will enable use of TIMESAT also for high-resolution data, e.g. data from the planned ESA Sentinel-2 satellite.

Keywords

Normalize Difference Vegetation Index Leaf Area Index Gross Primary Productivity Land Cover Class Smoothing Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors want to thank the many TIMESAT users, colleagues, and students who have contributed with constructive suggestions and ideas for improvement. We also thank the Swedish National Space Board, the Crafoord foundation, and the Krapperup foundation for financial support.

References

  1. Alcantara C, Kuemmerle T, Prishchepov AV, Radeloff VC (2012) Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens Environ 124:334–347CrossRefGoogle Scholar
  2. Atzberger C, Eilers PHC (2011) Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements. Int J Remote Sens 32:3689–3709CrossRefGoogle Scholar
  3. Ayres MP, Lombardero MJ (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ 262:263–286CrossRefGoogle Scholar
  4. Baret F, Morissette J, Fernandes R, Champeaux J-L, Myneni R, Chen J, Plummer S, Weiss M, Bacour C, Garrigues S, Nickeson J (2006) Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: proposition of the CEOS-BELMANIP. IEEE Trans Geosci Remote Sens 44:1794–1803CrossRefGoogle Scholar
  5. Barichivich J, Briffa KR, Osborn TJ, Melvin TM, Caesar J (2012) Thermal growing season and timing of biospheric carbon uptake across the Northern Hemisphere. Glob Biogeochem Cycles 26:GB4015CrossRefGoogle Scholar
  6. Barichivich J, Briffa KR, Myneni RB, Osborn TJ, Melvin TM, Ciais P, Piao S, Tucker C (2013) Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob Chang Biol 19:3167–3183CrossRefGoogle Scholar
  7. Beck PSA, Jönsson P, Hogda K-A, Karlsen SR, Eklundh L, Skidmore AK (2007) A ground-validated NDVI dataset for monitoring vegetation dynamics and mapping phenology in Fennoscandia and the Kola peninsula. Int J Remote Sens 28:4311–4330CrossRefGoogle Scholar
  8. Bergh J, McMurtrie RE, Linder S (1998) Climatic factors controlling the productivity of Norway spruce: a model-based analysis. For Ecol Manag 110:127–139CrossRefGoogle Scholar
  9. Boyd DS, Almond S, Dash J, Curran PJ, Hill RA (2011) Phenology of vegetation in Southern England from Envisat MERIS terrestrial chlorophyll index (MTCI) data. Int J Remote Sens 32:8421–8447Google Scholar
  10. Bradley BA, Jacob RW, Hermance JF, Mustard JF (2007) A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens Environ 106:137–145CrossRefGoogle Scholar
  11. Buma B, Pugh ET, Wessman CA (2013) Effect of the current major insect outbreaks on decadal phenological and LAI trends in southern Rocky Mountain forests. Int J Remote Sens 34:7249–7274CrossRefGoogle Scholar
  12. Campos AN, Di Bella CM (2012) Multi-temporal analysis of remotely sensed information using wavelets. J Geogr Inf Syst 4:383–391Google Scholar
  13. Clark ML, Aide TM, Grau HR, Riner G (2010) A scalable approach to mapping annual land cover at 250 m using MODIS time series data: a case study in the dry Chaco ecoregion of South America. Remote Sens Environ 114:2816–2832CrossRefGoogle Scholar
  14. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6:3–73Google Scholar
  15. Cong N, Wang T, Nan H, Ma Y, Wang X, Myneni RB, Piao S (2013) Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Glob Chang Biol 19:881–891CrossRefGoogle Scholar
  16. Defries RS, Townshend JRG (1994) NDVI-derived land cover classifications at a global scale. Int J Remote Sens 15:3567–3586CrossRefGoogle Scholar
  17. Eilers PHC (2003) A perfect smoother. Anal Chem 75:3631–3636CrossRefGoogle Scholar
  18. Eklundh L, Jönsson P (2012) TIMESAT 3.1 software manual. Lund University, LundGoogle Scholar
  19. Eklundh L, Jönsson P (2013) A new spatio-temporal smoother for extracting vegetation seasonality with TIMESAT, The 35th international symposium on remote sensing of environment, 22–26 April 2013, Beijing, ChinaGoogle Scholar
  20. Eklundh L, Olsson L (2003) Vegetation index trends for the African Sahel 1982–1999. Geophys Res Lett 30:1430–1433CrossRefGoogle Scholar
  21. Eklundh L, Johansson T, Solberg S (2009) Mapping insect defoliation in Scots pine with MODIS time-series data. Remote Sens Environ 113:1566–1573CrossRefGoogle Scholar
  22. Eklundh L, Jin H, Schubert P, Guzinski R, Heliasz M (2011) An optical sensor network for vegetation phenology monitoring and satellite data calibration. Sensors 11:7678–7709CrossRefGoogle Scholar
  23. Fensholt R, Proud SR (2012) Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ 119:131–147CrossRefGoogle Scholar
  24. Fisher JI, Mustard JF, Vadeboncoeur MA (2006) Green leaf phenology at Landsat resolution: scaling from the field to the satellite. Remote Sens Environ 100:265–279CrossRefGoogle Scholar
  25. Garcia D (2010) Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Stat Data Anal 54:1167–1178CrossRefGoogle Scholar
  26. Goetz SJ, Prince SD, Goward SN, Thawley MM, Small J (1999) Satellite remote sensing of primary production: an improved production efficiency modeling approach. Ecol Model 122:239–255CrossRefGoogle Scholar
  27. Goward SN, Markham Dye DG, Dulaney W, Yang J (1991) Normalized difference vegetation index measurements from the advanced very high resolution radiometer. Remote Sens Environ 35:257–277CrossRefGoogle Scholar
  28. Han Q, Luo G, Li C (2013) Remote sensing-based quantification of spatial variation in canopy phenology of four dominant tree species in Europe. J Appl Remote Sens 7:073485CrossRefGoogle Scholar
  29. Hermance JF, Jacob RW, Bradley BA, Mustard JF (2007) Extracting phenological signals from multiyear AVHRR NDVI time series: framework for applying high-order annual splines with roughness damping. IEEE Trans Geosci Remote Sens 45:3264–3276CrossRefGoogle Scholar
  30. Heumann BW, Seaquist JW, Eklundh L, Jönsson P (2007) AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens Environ 108:385–392CrossRefGoogle Scholar
  31. Hickler T, Eklundh L, Seaquist J, Smith B, Ardö J, Olsson L, Sykes M, Sjöström M (2005) Precipitation controls Sahel greening trend. Geophys Res Lett 32:L21415CrossRefGoogle Scholar
  32. Hird JN, McDermid GJ (2009) Noise reduction of NDVI time series: an empirical comparison of selected techniques. Remote Sens Environ 113:248–258CrossRefGoogle Scholar
  33. Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7:1417–1443CrossRefGoogle Scholar
  34. Huang C, Goward SN, Masek JG, Thomas N, Zhu Z, Vogelmann JE (2010) An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens Environ 114:183–198CrossRefGoogle Scholar
  35. Huete A, Didan K, Miura T, Rodrigues EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213CrossRefGoogle Scholar
  36. IPCC (2014) Climate Change 2014: impacts, adaptation, and vulnerability. IPCC Working Group II contribution to the Fifth Assessment Report. IPCC, YokohamaGoogle Scholar
  37. Jin H, Eklundh L (2014) A physically based vegetation index for improved monitoring of plant phenology. Remote Sens Environ 152:512–525Google Scholar
  38. Jönsson P, Eklundh L (2002) Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geosci Remote Sens 40:1824–1832CrossRefGoogle Scholar
  39. Jönsson P, Eklundh L (2004) TIMESAT – a program for analysing time-series of satellite sensor data. Comput Geosci 30:833–845CrossRefGoogle Scholar
  40. Jönsson AM, Linderson M-L, Stjernquist I, Schlyter P, Bärring L (2004) Climate change and the effect of temperature backlashes causing frost damage in Picea abies. Glob Planet Chang 44:195–207CrossRefGoogle Scholar
  41. Jönsson AM, Harding S, Bärring L, Ravn HP (2007) Impact of climate change on the population dynamics of Ips typographus in southern Sweden. Agric For Meteorol 146:70–781CrossRefGoogle Scholar
  42. Jönsson AM, Eklundh L, Hellström M, Bärring L, Jönsson P (2010) Annual changes in MODIS vegetation indices of Swedish coniferous forests in relation to snow dynamics and tree phenology. Remote Sens Environ 114:2719–2730CrossRefGoogle Scholar
  43. Justice CO, Townshend JRG, Holben BN, Tucker CJ (1985) Analysis of the phenology of global vegetation using meteorological satellite data. Int J Remote Sens 6:1271–1318CrossRefGoogle Scholar
  44. Kandasamy S, Baret F, Verger A, Neveux P, Weiss M (2013) A comparison of methods for smoothing and gap filling time series of remote sensing observations – application to MODIS LAI products. Biogeosciences 10:4055–4071CrossRefGoogle Scholar
  45. Le Page Y, Oom D, Silva JMN, Jönsson P, Pereira JMC (2010) Seasonality of vegetation fires as modified by human action: observing the deviation from eco-climatic fire regimes. Glob Ecol Biogeogr 19:575–588Google Scholar
  46. Leinenkugel P, Kuenzer C, Oppelt N, Dech S (2013) Characterisation of land surface phenology and land cover based on moderate resolution satellite data in cloud prone areas—A novel product for the Mekong Basin. Remote Sens Environ 136:180–198CrossRefGoogle Scholar
  47. Lobell DB, Ortiz-Monasterio JI, Sibley AM, Sohu VS (2013) Satellite detection of earlier wheat sowing in India and implications for yield trends. Agric Syst 115:137–143CrossRefGoogle Scholar
  48. LPVS (2014) Phenology focus area overview. http://lpvs.gsfc.nasa.gov/pheno_background.html. Accessed 24 June 2014
  49. Lu X, Liu R, Liu J, Liang S (2007) Removal of noise by Wavelet method to generate high quality temporal data of terrestrial MODIS products. Photogramm Eng Remote Sens 73:1129–1139CrossRefGoogle Scholar
  50. Lucht W, Prentice C, Myneni RB, Sitch S, Friedlingstein P, Cramer W, Bousquet P, Buermann W, Smith B (2002) Climatic control of the high-latitude vegetation greening trend and pinatubo effect. Science 296:1687–1689CrossRefGoogle Scholar
  51. Malingreau J-P (1986) Global vegetation dynamics: satellite observations over Asia. Int J Remote Sens 7:1121–1146CrossRefGoogle Scholar
  52. Menenti M, Azzali S, Verhoef W, van Swol R (1993) Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images. Adv Space Res 13:233–237CrossRefGoogle Scholar
  53. Menzel A (2002) Phenology: its importance to the global change community. Clim Chang 54:379–385CrossRefGoogle Scholar
  54. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolo P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dalh Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli O, Peñuelas J, Pirinen P, Remišov V, Scheifinger H, Striz M, Susnik A, VanVliet A, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976CrossRefGoogle Scholar
  55. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702CrossRefGoogle Scholar
  56. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RJ, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563CrossRefGoogle Scholar
  57. O’Connor B, Dwyer E, Cawkwell F, Eklundh L (2012) Spatio-temporal patterns in vegetation start of season across the island of Ireland using the MERIS Global Vegetation Index. ISPRS J Photogramm Remote Sens 68:79–94CrossRefGoogle Scholar
  58. Olofsson P, Eklundh L (2007) Estimation of absorbed PAR across Scandinavia from satellite measurements. Part II: modeling and evaluating the fractional absorption. Remote Sens Environ 110:240–251CrossRefGoogle Scholar
  59. Olofsson P, Eklundh L, Lagergren F, Jönsson P, Lindroth A (2007) Estimating net primary production for Scandinavian forests using data from Terra/MODIS. Adv Space Res 39:125–130CrossRefGoogle Scholar
  60. Olofsson P, Lagergren F, Lindroth A, Lindström J, Klemedtsson L, Kutsch W, Eklundh L (2008) Towards operational remote sensing of forest carbon balance across Northern Europe. Biogeosciences 5:817–832CrossRefGoogle Scholar
  61. Olsson L, Eklundh L (1994) Fourier transformation for analysis of temporal sequences of satellite imagery. Int J Remote Sens 15:3735–3741CrossRefGoogle Scholar
  62. Olsson L, Eklundh L, Ardö J (2005) A recent greening of the Sahel_97trends, patterns and potential causes. J Arid Environ 63:556–566CrossRefGoogle Scholar
  63. Olsson P-O, Jönsson AM, Eklundh L (2012) A new invasive insect in Sweden -Physokermes inopinatus – tracing forest damage with satellite based remote sensing. For Ecol Manag 285:29–37CrossRefGoogle Scholar
  64. Potter C, Gross P, Genovese V, Smith ML (2007) Net primary productivity of forest stands in New Hampshire estimated from Landsat and MODIS satellite data. Carbon Balance Manage 2:9CrossRefGoogle Scholar
  65. Prince SD (1991) A model of regional primary production for use with coarse resolution satellite data. Int J Remote Sens 12:1313–1330CrossRefGoogle Scholar
  66. Prince SD, Goward SN (1995) Global primary production: a remote sensing approach. J Biogeogr 22:815–835CrossRefGoogle Scholar
  67. Rautiainen M, Heiskanen J, Eklundh L, Mõttus M, Lukes P, Stenberg P (2010) Ecological applications of physically-based remote sensing methods. Scand J For Res 25:325–339CrossRefGoogle Scholar
  68. Reed BC, Brown JF, VanderZee D, Loveland TR, Merchant JW, Ohlen DO (1994) Measuring phenological variability from satellite imagery. J Veg Sci 5:703–714CrossRefGoogle Scholar
  69. Rodrigues A, Marcal A, Cunha M (2013) Monitoring vegetation dynamics inferred by satellite data using the PhenoSat tool. IEEE Trans Geosci Remote Sens 51:2096–2104CrossRefGoogle Scholar
  70. Roerink GJ, Menenti M, Verhoef W (2000) Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int J Remote Sens 21:1911–1917CrossRefGoogle Scholar
  71. Rouse JWJ, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS, Third ERTS Symposium, NASA SP-351, Washington DC, December 10–14 1973, 309–317Google Scholar
  72. Ruimy A, Saugier B, Dedieu G (1994) Methodology for the estimation of terrestrial net primary production from remotely sensed data. J Geophys Res 99:5263–5283CrossRefGoogle Scholar
  73. Running SW (1990) Estimating terrestrial primary productivity by combining remote sensing and ecosystem simulation. In: Hobbs RJ, Mooney HA (eds) Remote sensing of biosphere functioning. Springer, New York, pp 65–86CrossRefGoogle Scholar
  74. Running SW, Loveland TR, Pierce LL (1994) A vegetation classification logic based on remote sensing for use in global biogeochemical models. Ambio 23:77–81Google Scholar
  75. Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H (2005) A crop phenology detection method using time-series MODIS data. Remote Sens Environ 96:366–374CrossRefGoogle Scholar
  76. Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337CrossRefGoogle Scholar
  77. Schubert P, Eklundh L, Lund M, Nilsson M (2010) Estimating northern peatland CO2 exchange from MODIS time series data. Remote Sens Environ 114:1178–1189CrossRefGoogle Scholar
  78. Schubert P, Lagergren F, Aurela M, Christensen T, Grelle A, Heliasz M, Klemedtsson L, Lindroth A, Pilegaard K, Vesala T, Eklundh L (2012) Modeling GPP in the Nordic forest landscape with MODIS time series data – comparison with the MODIS GPP product. Remote Sens Environ 126:136–147CrossRefGoogle Scholar
  79. Schwartz MD (2013) Phenology: an integrative environmental science. Springer, DordrechtCrossRefGoogle Scholar
  80. Seaquist JW, Hickler T, Eklundh L, Ardö J, Heumann B (2009) Disentangling the effects of climate and people on sahel vegetation dynamics. Biogeosciences 6:469–477CrossRefGoogle Scholar
  81. Sims DA, Rahman AF, Cordova VD, El-Masri BZ, Baldocchi DD, Flanagan LB, Goldstein AH, Hollinger DY, Misson L, Monson RK, Oechel WC, Schmid HP, Wofsy SC, Xu L (2006) On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. J Geophys Res 111:G04015CrossRefGoogle Scholar
  82. Sjöström M, Ardö J, Eklundh L, El-Tahir BA, El-Khidir HAM, Hellström M, Pilesjö P, Seaquist J (2009) Evaluation of satellite based indices for gross primary production estimates in a sparse savanna in the Sudan. Biogeosciences 6:129–138CrossRefGoogle Scholar
  83. Sjöström M, Ardö J, Arneth A, Cappelaere B, Eklundh L, de Grandcourt A, Kutsch WL, Merbold L, Nouvellon Y, Scholes B, Seaquist J, Veenendaal EM (2011) Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems. Remote Sens Environ 115:1081–1089CrossRefGoogle Scholar
  84. Stisen S, Sandholt I, Norgaard A, Fensholt R, Eklundh L (2007) Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sens Environ 110:262–274CrossRefGoogle Scholar
  85. Tan B, Morisette J, Wolfe R, Gao F, Ederer G, Nightingale J, Pedelty J (2008) Vegetation Phenology metrics derived from temporally smoothed and Gap-filled MODIS data, Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE InternationalGoogle Scholar
  86. Tang XG, Wang X, Wang ZM, Liu DW, Jia MM, Dong ZY, Xie J, Ding Z, Wang HR, Liu XP (2013) Influence of vegetation phenology on modelling carbon fluxes in temperate deciduous forest by exclusive use of MODIS time-series data. Int J Remote Sens 34:8373–8392CrossRefGoogle Scholar
  87. Tottrup C, Schultz Rasmussen M, Eklundh L, Jönsson P (2007) Mapping fractional forest cover across the highlands of mainland Southeast Asia using MODIS data and regression tree modelling. Int J Remote Sens 28:23–46CrossRefGoogle Scholar
  88. Townshend JRG, Justice CO (1986) Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int J Remote Sens 7:1435–1445CrossRefGoogle Scholar
  89. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150CrossRefGoogle Scholar
  90. Tucker CJ, Vanpraet C, Boerwinkel E, Gaston A (1983) Satellite remote sensing of total dry matter production in the Senegalese Sahel. Remote Sens Environ 13:461–474CrossRefGoogle Scholar
  91. van Dijk A, Callis SL, Sakamoto CM, Decker WL (1987) Smoothing vegetation index profiles: an alternative method for reducing radiometric disturbance in NOAA/AVHRR data. Photogramm Eng Remote Sens 53:1059–1067Google Scholar
  92. van Leeuwen WJD, Davison JE, Casady GM, Marsh SE (2010) Phenological characterization of desert sky island vegetation communities with remotely sensed and climate time series data. Remote Sens 2:388–415CrossRefGoogle Scholar
  93. van Leeuwen WJD, Hartfield K, Miranda M, Meza FJ (2013) Trends and ENSO/AAO driven variability in NDVI derived productivity and Phenology alongside the Andes mountains. Remote Sens 5:1177–1203CrossRefGoogle Scholar
  94. Veraverbeke S, Lhermitte S, Verstraeten WW, Goossens R (2010) The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: the case of the large 2007 Peloponnese wildfires in Greece. Remote Sens Environ 114:2548–2563CrossRefGoogle Scholar
  95. Verbesselt J, Jönsson P, Lhermitte S, van Aardt J, Coppin P (2006) Evaluating satellite and climate data-derived indices as fire risk indicators in Savannah ecosystems. IEEE Trans Geosci Remote Sens 44:1622–1632CrossRefGoogle Scholar
  96. Verger A, Baret F, Weiss M, Kandasamy S, Vermote E (2013) The CACAO method for smoothing, gap filling, and characterizing seasonal anomalies in satellite time series. IEEE Trans Geosci Remote Sens 51:1963–1972CrossRefGoogle Scholar
  97. Viovy N, Arino O, Belward AS (1992) The Best Index Slope Extraction (BISE): a method for reducing noise in NDVI time-series. Int J Remote Sens 13:1585–1590CrossRefGoogle Scholar
  98. Weiss M, Hurk B, Haarsma R, Hazeleger W (2012) Impact of vegetation variability on potential predictability and skill of EC-Earth simulations. Clim Dyn 39:2733–2746CrossRefGoogle Scholar
  99. Wessels K, Steenkamp K, von Maltitz G, Archibald S (2011) Remotely sensed vegetation phenology for describing and predicting the biomes of South Africa. Appl Veg Sci 14:49–66CrossRefGoogle Scholar
  100. White MA, De Beurs KM, Didan K, Inouye DW, Richardson AD, Jensen OP, O’keefe J, Zhang G, Nemani RR, Van Leeuwen WJD, Brown JF, De Wit A, Schaepman M, Lin X, Dettinger M, Bailey AS, Kimball J, Schwartz MD, Baldocchi DD, Lee JT, Lauenroth WK (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob Chang Biol 15:2335–2359CrossRefGoogle Scholar
  101. Yuan H, Dai Y, Xiao Z, Ji D, Shangguan W (2011) Reprocessing the MODIS leaf area index products for land surface and climate modelling. Remote Sens Environ 115:1171–1187CrossRefGoogle Scholar
  102. Zeng H, Jia G, Forbes BC (2013) Shifts in Arctic phenology in response to climate and anthropogenic factors as detected from multiple satellite time series. Environ Res Lett 8:035036CrossRefGoogle Scholar
  103. Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475CrossRefGoogle Scholar
  104. Zhang M-Q, Guo H-Q, Xie X, Zhang T-T, Ouyang Z-T, Zhao B (2013) Identification of land-cover characteristics using MODIS time series data: an application in the Yangtze River Estuary. PLoS ONE 8:e70079CrossRefGoogle Scholar
  105. Zhao J, Wang Y, Hashimoto H, Melton FS, Hiatt SH, Zhang H, Nemani RR (2013) The variation of land surface Phenology from 1982 to 2006 along the Appalachian Trail. IEEE Trans Geosci Remote Sens 51:2087–2095CrossRefGoogle Scholar
  106. Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov N, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106:20069–20083CrossRefGoogle Scholar
  107. Zhu Z, Woodcock CE, Olofsson P (2012) Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens Environ 122:75–91CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
  2. 2.Group for Materials Science and Applied MathematicsMalmö UniversityMalmöSweden

Personalised recommendations