Advertisement

Change Detection Techniques: A Review

  • Yifang BanEmail author
  • Osama Yousif
Chapter
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 20)

Abstract

With its synoptic view and the repeatability, satellite remote sensing can provide timely, accurate and consistent information about earth’s surface for cost-effective monitoring of environmental changes. In this chapter, recent development in change detection techniques using multitemporal remotely sensed images were reviewed. The chapter covers change detection methods for both optical and SAR images. Various aspects of change detection processes were presented including data preprocessing, change image generation and change detection algorithms such as unsupervised and supervised change detection as well as pixel-based and object-based change detection. The review shows that significant progress has been made in the field of change detection and innovative methods have been developed for change detection using both multitemporal SAR and optical data. Attempts have been made for change detection using multitemporal multisensor/cross-sensor images. The review also identified a number of challenges and opportunities in change detection.

Keywords

Normalize Difference Vegetation Index Change Detection Synthetic Aperture Radar Synthetic Aperture Radar Image Conditional Random Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Achard F, Eva HD, Stibig H-J, Mayaux P, Gallego J, Richards T, Malingreau J-P (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297(5583):999–1002. doi: 10.1126/science.1070656 CrossRefGoogle Scholar
  2. Akbari V, Doulgeris A, Eltoft T (2014) Monitoring glacier changes using multitemporal multipolarization SAR images. IEEE Trans Geosci Remote Sens 52:3729–3741CrossRefGoogle Scholar
  3. Alberga V (2009) Similarity measures of remotely sensed multi-sensor images for change detection applications. Remote Sens 1:122–143. doi: 10.3390/rs1030122 CrossRefGoogle Scholar
  4. Alphan H, Doygun H, Unlukaplan YI (2008) Post-classification comparison of land cover using multitemporal Landsat and ASTER imagery: the case of Kahramanmaraş. Turkey Environ Monit Assess 151:327–336. doi: 10.1007/s10661-008-0274-x CrossRefGoogle Scholar
  5. Alwashe MA, Bokhari AY (1993) Monitoring vegetation changes in Al Madinah, Saudi Arabia, using Thematic Mapper data. Int J Remote Sens 14:191–197CrossRefGoogle Scholar
  6. Anders NS, Seijmonsbergen A, Bouten W (2013) Geomorphological change detection using object-based feature extraction from multi-temporal LiDAR data. IEEE Geosci Remote Sens Lett 10:1587–1591. doi: 10.1109/LGRS.2013.2262317 CrossRefGoogle Scholar
  7. Ban Y, Jacob A (2013) Object-based fusion of multitemporal multi-angle ENVISAT ASAR and HJ-1 multispectral data for urban land-cover mapping. IEEE Trans GeoSci Rem Sens 51(4):1998–2006CrossRefGoogle Scholar
  8. Ban Y, Yousif O (2012) Multitemporal spaceborne SAR data for urban change detection in China. IEEE J Sel Top Appl Earth Obs Rem Sen 5(4):1087–1094CrossRefGoogle Scholar
  9. Ban Y, Yousif O, Hu H (2014) Fusion of SAR and optical data for urban land cover mapping and change detection. Glob Urban Monit Assess Earth Obs 353Google Scholar
  10. Baselice F, Ferraioli G, Pascazio V (2014) Markovian change detection of urban areas using very high resolution complex SAR images. IEEE Geosci Remote Sens Lett 11:995–999. doi: 10.1109/LGRS.2013.2284297 CrossRefGoogle Scholar
  11. Bazi Y, Bruzzone L, Melgani F (2005) An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Trans Geosci Remote Sens 43:874–887. doi: 10.1109/TGRS.2004.842441 CrossRefGoogle Scholar
  12. Bazi Y, Bruzzone L, Melgani F (2006) Automatic identification of the number and values of decision thresholds in the log-ratio image for change detection in SAR images. IEEE Geosci Remote Sens Lett 3:349–353. doi: 10.1109/LGRS.2006.869973 CrossRefGoogle Scholar
  13. Berberoglu S, Akin A (2009) Assessing different remote sensing techniques to detect land use/cover changes in the eastern Mediterranean. Int J Appl Earth Obs Geoinf 11:46–53. doi: 10.1016/j.jag.2008.06.002 CrossRefGoogle Scholar
  14. Bin W, Jian Y, Zhongming Z, Yu M, Anzhi Y, Jingbo C, Dongxu H, Xingchun L, Shunxi L (2013) Parcel-based change detection in land-use maps by adopting the holistic feature. IEEE J Sel Top Appl Earth Obs Remote Sens. Early Access OnlineGoogle Scholar
  15. Blaschke T (2005) Towards a framework for change detection based on image objects. Gött Geogr Abh 113:1–9Google Scholar
  16. Boccardo P, Borgogno Mondinoa E, Giulio Tonolo F, Lingua A (2004) Orthorectification of high resolution satellite images. In: Proceedings, ISPRS 35th congress, Istanbul.Google Scholar
  17. Bontemps S, Bogaert P, Titeux N, Defourny P (2008) An object-based change detection method accounting for temporal dependences in time series with medium to coarse spatial resolution. Remote Sens Environ 112:3181–3191. doi: 10.1016/j.rse.2008.03.013 CrossRefGoogle Scholar
  18. Bouziani M, Goïta K, He D-C (2010) Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geodatabase and prior knowledge. ISPRS J Photogramm Remote Sens 65:143–153CrossRefGoogle Scholar
  19. Bovolo F, Bruzzone L (2005) A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Trans Geosci Remote Sens 43:2963–2972. doi: 10.1109/TGRS.2005.857987 CrossRefGoogle Scholar
  20. Bovolo F, Bruzzone L (2007a) A split-based approach to unsupervised change detection in large-size multitemporal images: application to tsunami-damage assessment. IEEE Trans Geosci Remote Sens 45:1658–1670. doi: 10.1109/TGRS.2007.895835 CrossRefGoogle Scholar
  21. Bovolo F, Bruzzone L (2007b) A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain. IEEE Trans Geosci Remote Sens 45:218–236. doi: 10.1109/TGRS.2006.885408 CrossRefGoogle Scholar
  22. Bovolo F, Bruzzone L, Marchesi S (2009) Analysis and adaptive estimation of the registration noise distribution in multitemporal VHR images. IEEE Trans Geosci Remote Sens 47(8):2658–2671CrossRefGoogle Scholar
  23. Bovolo F, Marin C, Bruzzone L (2013) A hierarchical approach to change detection in very high resolution SAR images for surveillance applications. IEEE Trans Geosci Remote Sens 51:2042–2054. doi: 10.1109/TGRS.2012.2223219 CrossRefGoogle Scholar
  24. Brunner B, Lemoine G, Bruzzone L (2010) Earthquake damage assessment of buildings using VHR optical and SAR imagery. IEEE Trans Geosci Remote Sens 48(5):2403–2420Google Scholar
  25. Bruzzone L, Prieto DF (2000a) Automatic analysis of the difference image for unsupervised change detection. IEEE Trans Geosci Remote Sens 38:1171–1182CrossRefGoogle Scholar
  26. Bruzzone L, Prieto DF (2000b) Unsupervised change detection in multisource and multisensor remote sensing images. In: Proceedings. IEEE 2000 international geoscience and remote sensing symposium. Presented at the IGARSS 2000, vol 6, pp 2441–2443. doi: 10.1109/IGARSS.2000.859602
  27. Bruzzone L, Prieto DF (2002) An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images. IEEE Trans Image Process 11:452–466CrossRefGoogle Scholar
  28. Bujor FT, Nicolas J-M, Trouve E, Rudant J-P (2003) Application of log-cumulants to change detection on multi-temporal SAR images. In: IEEE international geoscience and remote sensing symposium. Presented at the IGARSS 2003, vol 2, pp 1386–1388Google Scholar
  29. Bujor F, Trouve E, Valet L, Nicolas J-M, Rudant J-P (2004) Application of log-cumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images. IEEE Trans Geosci Remote Sens 42:2073–2084. doi: 10.1109/TGRS.2004.835304 CrossRefGoogle Scholar
  30. Cakir HI, Khorram S, Nelson SAC (2006) Correspondence analysis for detecting land cover change. Remote Sens Environ 102:306–317. doi: 10.1016/j.rse.2006.02.023 CrossRefGoogle Scholar
  31. Castellana L, D’Addabbo A, Pasquariello G (2007) A composed supervised/unsupervised approach to improve change detection from remote sensing. Pattern Recogn Lett 28:405–413. doi: 10.1016/j.patrec.2006.08.010 CrossRefGoogle Scholar
  32. Celik T (2009) Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci Remote Sens Lett 6:772–776. doi: 10.1109/LGRS.2009.2025059 CrossRefGoogle Scholar
  33. Celik T (2010a) A Bayesian approach to unsupervised multiscale change detection in synthetic aperture radar images. Signal Process 90:1471–1485. doi: 10.1016/j.sigpro.2009.10.018 CrossRefGoogle Scholar
  34. Celik T (2010b) Change detection in satellite images using a genetic algorithm approach. IEEE Geosci Remote Sens Lett 7:386–390. doi: 10.1109/LGRS.2009.2037024 CrossRefGoogle Scholar
  35. Chatelain F, Tourneret J-Y, Inglada J, Ferrari A (2007) Bivariate gamma distributions for image registration and change detection. IEEE Trans Image Process 16:1796–1806CrossRefGoogle Scholar
  36. Chen G, Hay GJ, Carvalho LMT, Wulder MA (2012) Object-based change detection. Int J Remote Sens 33:4434–4457. doi: 10.1080/01431161.2011.648285 CrossRefGoogle Scholar
  37. Chen G, Zhao K, Powers R (2014) Assessment of the image misregistration effects on object-based change detection. ISPRS J Photogramm Remote Sens 87:19–27CrossRefGoogle Scholar
  38. Conradsen K, Nielsen AA, Schou J, Skriver H (2003) A test statistic in the complex wishart distribution and its application to change detection in polarimetric SAR data. IEEE Trans Geosci Remote Sens 41:4–19. doi: 10.1109/TGRS.2002.808066 CrossRefGoogle Scholar
  39. Cossu R, Chaudhuri S, Bruzzone L (2005) A context-sensitive bayesian technique for the partially supervised classification of multitemporal images. IEEE Geosci Remote Sens Lett 2:352–356. doi: 10.1109/LGRS.2005.851541 CrossRefGoogle Scholar
  40. Cui S, Schwarz G, Datcu M (2016) A benchmark evaluation of similarity measures for multitemporal SAR image change detection. IEEE J Sel Top Appl Earth Obs Remote Sens 9:1101–1118. doi: 10.1109/JSTARS.2015.2486038 CrossRefGoogle Scholar
  41. Dai X, Khorram S (1998) The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Trans Geosci Remote Sens 36:1566–1577CrossRefGoogle Scholar
  42. Dawelbait M, Morari F (2012) Monitoring desertification in a Savannah region in Sudan using Landsat images and spectral mixture analysis. J Arid Environ 80:45–55CrossRefGoogle Scholar
  43. de Carvalho O, Guimaraes R, Gomes R, de Carvalho A, da Silva N (2006) Normalization of multi-temporal images using a new change detection method based on the spectral classifier. In: IEEE international conference on geoscience and remote sensing symposium, 2006. IGARSS 2006. Presented at the IEEE international conference on geoscience and remote sensing symposium, 2006. IGARSS 2006, pp 771–774. doi: 10.1109/IGARSS.2006.198
  44. Dekker RJ (1998) Speckle filtering in satellite SAR change detection imagery. Int J Remote Sens 19:1133–1146CrossRefGoogle Scholar
  45. Del Frate F, Pacifici F, Solimini D (2008) Monitoring urban land cover in Rome, Italy, and its changes by single-polarization multitemporal SAR images. IEEE J Sel Top Appl Earth Obs Remote Sens 1:87–97. doi: 10.1109/JSTARS.2008.2002221 CrossRefGoogle Scholar
  46. Deng J-S, Wang K, Li J, Deng Y-H (2009) Urban land use change detection using multisensor satellite images. Pedosphere 19:96–103. doi: 10.1016/S1002-0160(08)60088-0
  47. Desclée B, Bogaert P, Defourny P (2006) Forest change detection by statistical object-based method. Remote Sens Environ 102:1–11. doi: 10.1016/j.rse.2006.01.013 CrossRefGoogle Scholar
  48. Du P, Liu S, Gamba P, Tan K, Xia J (2012) Fusion of difference images for change detection over urban areas. IEEE J Sel Top Appl Earth Obs Remote Sens 5:1076–1086. doi: 10.1109/JSTARS.2012.2200879 CrossRefGoogle Scholar
  49. Du P, Liu S, Xia J, Zhao Y (2013) Information fusion techniques for change detection from multi-temporal remote sensing images. Inf Fusion 14:19–27. doi: 10.1016/j.inffus.2012.05.003 CrossRefGoogle Scholar
  50. Fletcher K, European Space Agency, European Space Research and Technology Centre, ESTEC (2007) InSAR principles: guidelines for SAR interferometry processing and interpretation. ESA Publications Division, ESTEC, Noordwijk, the NetherlandsGoogle Scholar
  51. Gamba P, Dell’Acqua F, Lisini G (2006) Change detection of multitemporal SAR data in urban areas combining feature-based and pixel-based techniques. IEEE Trans Geosci Remote Sens 44:2820–2827. doi: 10.1109/TGRS.2006.879498 CrossRefGoogle Scholar
  52. Gamba P, Dell’Acqua F, Trianni G (2007) Rapid damage detection in the bam area using multitemporal SAR and exploiting ancillary data. IEEE Trans Geosci Remote Sens 45:1582–1589. doi: 10.1109/TGRS.2006.885392 CrossRefGoogle Scholar
  53. Gao F, Masek JG, Wolfe RE, Tan B (2010) Normalizing Landsat and ASTER data using MODIS data products for forest change detection. In: Geoscience and remote sensing symposium (IGARSS), 2010 IEEE international. Presented at the Geoscience and Remote Sensing Symposium (IGARSS). 2010 IEEE International, pp 3206–3209Google Scholar
  54. Garzelli A (1999) Classification of polarimetric SAR images using adaptive neighbourhood structures. Int J Remote Sens 20:1669–1675. doi: 10.1080/014311699212678 CrossRefGoogle Scholar
  55. Ghosh S, Bruzzone L, Patra S, Bovolo F, Ghosh A (2007) A context-sensitive technique for unsupervised change detection based on Hopfield-Type neural networks. IEEE Trans Geosci Remote Sens 45:778–789. doi: 10.1109/TGRS.2006.888861 CrossRefGoogle Scholar
  56. Gong M, Cao Y, Wu Q (2012a) A neighborhood-based ratio approach for change detection in SAR images. IEEE Geosci Remote Sens Lett 9:307–311. doi: 10.1109/LGRS.2011.2167211 CrossRefGoogle Scholar
  57. Gong M, Zhou Z, Ma J (2012b) Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans Image Process 21:2141–2151. doi: 10.1109/TIP.2011.2170702 CrossRefGoogle Scholar
  58. Gong M, Zhao J, Liu J, Miao Q, Jiao L (2016) Change detection in synthetic aperture radar images based on deep neural networks. IEEE Trans Neural Netw Learn Syst 27:125–138. doi: 10.1109/TNNLS.2015.2435783 CrossRefGoogle Scholar
  59. Grey W, Luckman A, Holland D (2003) Mapping urban change in the UK using satellite radar interferometry. Remote Sens Environ 87:16–22. doi: 10.1016/S0034-4257(03)00142-1 CrossRefGoogle Scholar
  60. Hachicha S, Chaabane F (2010) Comparison of change detection indicators in SAR images. In: 8th European conference on synthetic aperture radar. EUSAR 2010, pp 1–4Google Scholar
  61. Hall O, Hay GJ (2003) A multiscale object-specific approach to digital change detection. Int J Appl Earth Obs Geoinf 4:311–327. doi: 10.1016/S0303-2434(03)00010-2 CrossRefGoogle Scholar
  62. Hao M, Shi W, Zhang H, Li C (2014) Unsupervised change detection with expectation-maximization-based level set. IEEE Geosci Remote Sens Lett 11:210–214CrossRefGoogle Scholar
  63. Hazel GG (2001) Object-level change detection in spectral imagery. IEEE Trans Geosci Remote Sens 39:553–561. doi: 10.1109/36.911113 CrossRefGoogle Scholar
  64. He C, Wei A, Shi P, Zhang Q, Zhao Y (2011) Detecting land-use/land-cover change in rural–urban fringe areas using extended change-vector analysis. Int J Appl Earth Obs Geoinf 13:572–585. doi: 10.1016/j.jag.2011.03.002 CrossRefGoogle Scholar
  65. Hoberg T, Rottensteiner F, Feitosa RQ, Heipke C (2015) Conditional random fields for multitemporal and multiscale classification of optical satellite imagery. IEEE Trans Geosci Remote Sens 53:659–673. doi: 10.1109/TGRS.2014.2326886 CrossRefGoogle Scholar
  66. Hou B, Wei Q, Zheng Y, Wang S (2014) Unsupervised change detection in SAR image based on gauss-log ratio image fusion and compressed projection. IEEE J Sel Top Appl Earth Obs Remote Sens. Early Access Online. doi: 10.1109/JSTARS.2014.2328344
  67. Hu H, Ban Y (2014) Unsupervised change detection in multitemporal SAR images over large urban areas. IEEE J Selected Top Appl Earth Obs Remote Sens 7(8):3248–3261. doi: 10.1109/JSTARS.2014.2344017 CrossRefGoogle Scholar
  68. Hussain M, Chen D, Cheng A, Wei H, Stanley D (2013) Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens 80:91–106CrossRefGoogle Scholar
  69. Im J, Jensen JR (2005) A change detection model based on neighborhood correlation image analysis and decision tree classification. Remote Sens Environ 99:326–340CrossRefGoogle Scholar
  70. Im J, Jensen JR, Tullis JA (2008) Object-based change detection using correlation image analysis and image segmentation. Int J Remote Sens 29:399–423. doi: 10.1080/01431160601075582 CrossRefGoogle Scholar
  71. Inglada J, Giros A (2004) On the possibility of automatic multisensor image registration. IEEE Trans Geosci Remote Sens 42:2104–2120. doi: 10.1109/TGRS.2004.835294 CrossRefGoogle Scholar
  72. Inglada J, Mercier G (2007) A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans Geosci Remote Sens 45:1432–1445. doi: 10.1109/TGRS.2007.893568 CrossRefGoogle Scholar
  73. Janalipour M, Mohammadzadeh A (2016) Building damage detection using object-based image analysis and ANFIS from high-resolution image (Case study: BAM earthquake, Iran). IEEE J Sel Top Appl Earth Obs Remote Sens 9:1937–1945CrossRefGoogle Scholar
  74. Jovanović D, Govedarica M, Đorđević I, Pajić V (2010) Object based image analysis in forestry change detection. In: International symposium on intelligent systems and informatics. Presented at the SISY 2010, pp 231–236. doi: 10.1109/SISY.2010.5647487
  75. Kasetkasem T, Varshney PK (2002) An image change detection algorithm based on Markov random field models. IEEE Trans Geosci Remote Sens 40:1815–1823CrossRefGoogle Scholar
  76. Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recogn 19:41–47CrossRefGoogle Scholar
  77. Latifovic R, Pouliot D (2014) Monitoring cumulative long-term vegetation changes over the Athabasca oil sands region. IEEE J Sel Top Appl Earth Obs Remote Sens. Early access online. doi: 10.1109/JSTARS.2014.2321058
  78. Lee JS, Jurkevich L, Dewaele P, Wambacq P, Oosterlinck A (1994) Speckle filtering of synthetic aperture radar images: A review. Remote Sens Rev 8(4):313–340CrossRefGoogle Scholar
  79. Leonardo P, Franceisco G, Jose A, Sobrino JC, Jimenez M, Haydee K (2006) Radiometric correction effects in Landsat multi-date/multi-sensor change detection studies. Int J Remote Sens 2:685–704Google Scholar
  80. Li SZ (2009) Markov random field modeling in image analysis, 3rd edn. Springer, LondonGoogle Scholar
  81. Li HC, Celik T, Longbotham N, Emery WJ (2015) Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering. IEEE Geosci Remote Sens Lett 12:2458–2462. doi: 10.1109/LGRS.2015.2484220 CrossRefGoogle Scholar
  82. Liu Z, Mercier G, Dezert J, Pan Q (2014) Change detection in heterogeneous remote sensing images based on multidimensional evidential reasoning. IEEE Geosci Remote Sens Lett 11:168–172. doi: 10.1109/LGRS.2013.2250908 CrossRefGoogle Scholar
  83. Liu S, Bruzzone L, Bovolo F, Du P (2015a) Hierarchical unsupervised change detection in multitemporal hyperspectral images. IEEE Trans Geosci Remote Sens 53:244–260. doi: 10.1109/TGRS.2014.2321277 CrossRefGoogle Scholar
  84. Liu S, Bruzzone L, Bovolo F, Zanetti M, Du P (2015b) Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images. IEEE Trans Geosci Remote Sens 53:4363–4378. doi: 10.1109/TGRS.2015.2396686 CrossRefGoogle Scholar
  85. Lu D, Mausel P, Brondízio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25:2365–2401. doi: 10.1080/0143116031000139863 CrossRefGoogle Scholar
  86. Lyon JG, Yuan D, Lunetta RS, Elvidge CD (1998) A change detection experiment using vegetation indices. Photogramm Eng Remote Sens 64:143–150Google Scholar
  87. Ma J, Gong M, Zhou Z (2012) Wavelet fusion on ratio images for change detection in SAR images. IEEE Geosci Remote Sens Lett 9:1122–1126. doi: 10.1109/LGRS.2012.2191387 CrossRefGoogle Scholar
  88. Malila WA (1980) Change vector analysis: an approach for detecting forest changes with Landsat. LARS Symposia. Paper 385. http://docs.lib.purdue.edu/lars_symp/385
  89. Marchesi S, Bovolo F, Bruzzone L (2010) A context-sensitive technique Robust to registration noise for change detection in VHR multispectral images. IEEE Trans Image Process 19(7):1877–1889Google Scholar
  90. Marin C, Bovolo F, Bruzzone L (2015) Building change detection in multitemporal very high resolution SAR images. IEEE Trans Geosci Remote Sens 53:2664–2682. doi: 10.1109/TGRS.2014.2363548 CrossRefGoogle Scholar
  91. Marsetic A, Ostir K, Fras MK (2016) Automatic orthorectification of high-resolution optical satellite images using vector roads. IEEE Trans Geosci Remote Sens 53(11):6035–6047CrossRefGoogle Scholar
  92. Martinez J-M, Le Toan T (2007) Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sens Environ 108(3):209–223. doi: 10.1016/j.rse.2006.11.012 CrossRefGoogle Scholar
  93. Martinis S, Twele A, Voigt S (2011) Unsupervised extraction of flood-induced backscatter changes in SAR data using Markov image modeling on irregular graphs. IEEE Trans Geosci Remote Sens 49:251–263. doi: 10.1109/TGRS.2010.2052816 CrossRefGoogle Scholar
  94. Melgani F, Moser G, Serpico SB (2002) Unsupervised change-detection methods for remote-sensing images. Opt Eng 41:3288–3297CrossRefGoogle Scholar
  95. Mercier G, Moser G, Serpico SB (2008) Conditional copulas for change detection in heterogeneous remote sensing images. IEEE Trans Geosci Remote Sens 46:1428–1441. doi: 10.1109/TGRS.2008.916476 CrossRefGoogle Scholar
  96. Moser G, Serpico SB (2006) Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery. IEEE Trans Geosci Remote Sens 44:2972–2982. doi: 10.1109/TGRS.2006.876288 CrossRefGoogle Scholar
  97. Moser G, Serpico SB (2009) Unsupervised change detection from multichannel SAR data by Markovian data fusion. IEEE Trans Geosci Remote Sens 47:2114–2128. doi: 10.1109/TGRS.2009.2012407 CrossRefGoogle Scholar
  98. Moser G, Melgani F, Serpico SB, Caruso A (2002) Partially supervised detection of changes from remote sensing images. In: IEEE international geoscience and remote sensing symposium. Presented at the IGARSS 2002, vol 1, pp 299–301. doi: 10.1109/IGARSS.2002.1025019
  99. Moser G, Serpico S, Vernazza G (2007) Unsupervised change detection from multichannel SAR images. IEEE Geosci Remote Sens Lett 4:278–282. doi: 10.1109/LGRS.2007.890549 CrossRefGoogle Scholar
  100. Nemmour H, Chibani Y (2006) Multiple support vector machines for land cover change detection: an application for mapping urban extensions. ISPRS J Photogramm Remote Sens 61:125–133. doi: 10.1016/j.isprsjprs.2006.09.004 CrossRefGoogle Scholar
  101. Nielsen A (2007) The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Trans Image Process 16:463–478. doi: 10.1109/TIP.2006.888195 CrossRefGoogle Scholar
  102. Niemeyer I, Marpu PR, Nussbaum S (2008) Change detection using object features. In: Blaschke T, Lang S, Hay GJ (eds) Object-based image analysis, Lecture notes in geoinformation and cartography. Springer, Berlin/Heidelberg, pp 185–201CrossRefGoogle Scholar
  103. Oliver C, Quegan S (2004) Understanding synthetic aperture radar images. SciTech Publishing, RaleighGoogle Scholar
  104. Orsomando F, Lombardo P, Zavagli M, Costantini M (2007) SAR and optical data fusion for change detection. Urban Remote Sens Joint Event 2007:1–9Google Scholar
  105. Poulain V, Inglada J, Spigai M, Tourneret J-Y, Marthon P (2011) High-resolution optical and SAR image fusion for building database updating. IEEE Trans Geosci Remote Sens 49:2900–2910. doi: 10.1109/TGRS.2011.2113351 CrossRefGoogle Scholar
  106. Qin Y, Niu Z, Chen F, Li B, Ban Y (2013) Object-based land cover change detection for cross-sensor images. Int J Remote Sens 34:6723–6737. doi: 10.1080/01431161.2013.805282 CrossRefGoogle Scholar
  107. Quin G, Pinel-Puyssegur B, Nicolas J-M, Loreaux P (2014) MIMOSA: an automatic change detection method for SAR time series. IEEE Trans Geosci Remote Sens 52:5349–5363. doi: 10.1109/TGRS.2013.2288271 CrossRefGoogle Scholar
  108. Rasi R, Beuchle R, Bodart C, Vollmar M, Seliger R, Achard F (2013) Automatic updating of an object-based tropical forest cover classification and change assessment. IEEE J Sel Top Appl Earth Obs Remote Sens 6:66–73. doi: 10.1109/JSTARS.2012.2217733 CrossRefGoogle Scholar
  109. Rignot EJ, van Zyl JJ (1993) Change detection techniques for ERS-1 SAR data. IEEE Trans Geosci Remote Sens 31:896–906CrossRefGoogle Scholar
  110. Roy M, Ghosh S, Ghosh A (2012) Search-based semi-supervised clustering algorithms for change detection in remotely sensed images. In: Annual IEEE India conference. Presented at the INDICON 2012, pp 503–507. doi: 10.1109/INDCON.2012.6420670
  111. Sabry R (2009) A new coherency formalism for change detection and phenomenology in SAR imagery: a field approach. IEEE Geosci Remote Sens Lett 6:458–462. doi: 10.1109/LGRS.2009.2016359 CrossRefGoogle Scholar
  112. Singh A (1989) Review Article Digital Change Detection techniques using remotely-sensed data. Int J Remote Sens 10(6):989–1003. doi: 10.1080/01431168908903939 CrossRefGoogle Scholar
  113. Solberg AH, Taxt T, Jain AK (1996) A Markov random field model for classification of multisource satellite imagery. IEEE Trans Geosci Remote Sens 34:100–113CrossRefGoogle Scholar
  114. Son NT, Chen CF, Chang NB, Chen CR, Chang LY, Thanh BX (2015) Mangrove mapping and change detection in Ca Mau Peninsula, Vietnam using landsat data and object-based image analysis. IEEE J Sel Top Appl Earth Obs Remote Sens 8:503–510. doi: 10.1109/JSTARS.2014.2360691 CrossRefGoogle Scholar
  115. Taubenböck H, Esch T, Felbier A, Wiesner M, Roth A, Dech S (2012) Monitoring urbanization in mega cities from Space. Remote Sens Environ 117:162–176CrossRefGoogle Scholar
  116. Thonfeld F, Feilhauer H, Braun M, Menz G (2016) Robust Change Vector Analysis (RCVA) for multi-sensor very high resolution optical satellite data. Int J Appl Earth Obs Geoinfor 50:131–140. doi: 10.1016/j.jag.2016.03.009 CrossRefGoogle Scholar
  117. Townshend JRG, Justice CO, Gurney C, McManus J (1992) The impact of misregistration on change detection. IEEE Trans Geosci Remote Sens 30:1054–1060. doi: 10.1109/36.175340 CrossRefGoogle Scholar
  118. Tso B, Olsen RC (2005) A contextual classification scheme based on MRF model with improved parameter estimation and multiscale fuzzy line process. Remote Sens Environ 97:127–136. doi: 10.1016/j.rse.2005.04.021 CrossRefGoogle Scholar
  119. Velloso MLF, de Souzal FJ, Simoes M (2002) Improved radiometric normalization for land cover change detection: an automated relative correction with artificial neural network. In: Geoscience and remote sensing symposium, 2002. IGARSS’02. 2002 IEEE international. Presented at the geoscience and remote sensing symposium, 2002. IGARSS’02. 2002 IEEE international, vol 6, pp 3435–3437. doi: 10.1109/IGARSS.2002.1027207
  120. Vollmar M, Rasi R, Beuchle R, Simonetti D, Stibig H-J, Achard F (2013) Combining Landsat TM/ETM+ and ALOS AVNIR-2 satellite data for tropical forest cover change detection. IEEE J Sel Top Appl Earth Obs Remote Sens 6:102–109. doi: 10.1109/JSTARS.2013.2241017 CrossRefGoogle Scholar
  121. Volpi M, Tuia D, Bovolo F, Kanevski M, Bruzzone L (2013) Supervised change detection in VHR images using contextual information and support vector machines. Int J Appl Earth Obs Geoinfor 20:77–85. doi: 10.1016/j.jag.2011.10.013 CrossRefGoogle Scholar
  122. Walter V (2004) Object-based classification of remote sensing data for change detection. ISPRS J Photogramm Remote Sens 58:225–238. doi: 10.1016/j.isprsjprs.2003.09.007 CrossRefGoogle Scholar
  123. Wang F, Wu Y, Zhang Q, Zhang P, Li M, Lu Y (2013) Unsupervised change detection on SAR images using triplet Markov field model. IEEE Geosci Remote Sens Lett 10:697–701. doi: 10.1109/LGRS.2012.2219494 CrossRefGoogle Scholar
  124. Xiong B, Chen Q, Jiang Y, Kuang G (2012) A threshold selection method using two SAR change detection measures based on the Markov random field model. IEEE Geosci Remote Sens Lett 9:287–291. doi: 10.1109/LGRS.2011.2166149 CrossRefGoogle Scholar
  125. Yang X, Zhang K, Jia B, Ci L (2005) Desertification assessment in China: an overview. J Arid Environ 63(2):517–531CrossRefGoogle Scholar
  126. Yousif O, Ban Y (2013) Improving urban change detection from multitemporal SAR images using PCA-NLM. IEEE Trans Geosci Remote Sens 51:2032–2041. doi: 10.1109/TGRS.2013.2245900 CrossRefGoogle Scholar
  127. Yousif O, Ban Y (2014) Improving SAR-based urban change detection by combining MAP-MRF classifier and nonlocal means similarity weights. IEEE J Sel Top Appl Earth Obs Remote Sens 7:4288–4300. doi: 10.1109/JSTARS.2014.2347171 CrossRefGoogle Scholar
  128. Yousif O, Ban Y (2015) Object-based urban change detection using high resolution SAR images. 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, pp 1–4. doi: 10.1109/JURSE.2015.7120502
  129. Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME (2005) Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens Environ 98:317–328. doi: 10.1016/j.rse.2005.08.006 CrossRefGoogle Scholar
  130. Zhong P, Wang R (2006) Object detection based on combination of conditional random field and Markov random field. In: 18th international conference on pattern recognition, 2006. ICPR 2006. Presented at the ICPR 2006, pp 160–163. doi: 10.1109/ICPR.2006.876
  131. Zhou W, Troy A, Grove M (2008) A comparison of object-based with pixel-based land cover change detection in the Baltimore Metropolitan area using multitemporal high resolution remote sensing data. In: IEEE international geoscience and remote sensing symposium. Presented at the IGARSS 2008, p IV-683-IV-686. doi: 10.1109/IGARSS.2008.4779814
  132. Zhou L, Cao G, Li Y, Shang Y (2016) Change detection based on conditional random field with region connection constraints in high-resolution remote sensing images. IEEE J Sel Top Appl Earth Obs Remote Sens, pp 1–1. doi: 10.1109/JSTARS.2016.2514610

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Division of GeoinformaticsKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations