Advertisement

Multitemporal Remote Sensing: Current Status, Trends and Challenges

  • Yifang Ban
Chapter
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 20)

Abstract

Our planet is facing unprecedented environmental challenges including rapid urbanization, deforestation, pollution, loss of biodiversity, sea-level rising, melting polar ice-caps and climate change. With its synoptic view and the repeatability, remote sensing offers a powerful and effective means to observe and monitor our changing planet at local, regional and global scale. Since the launch of Landsat-1 in 1972, numerous Earth Observation satellites have been launched providing large volumes of multitemporal data acquired by multispectral, hyperspectral, passive microwave, synthetic aperture radar (SAR), and LiDAR sensors. This chapter first presents an overview of the Earth Observation sensors and trends in multitemporal observation capacity. Then the current status, challenges and opportunities of multitemporal remote sensing are discussed. Finally the synopsis of the book is provided covering a wide array of methods and techniques in processing and analysis of multitemporal remotely sensed images as well as a variety of application examples in both land and aquatic environments.

Keywords

Land Surface Temperature Synthetic Aperture Radar Advanced Very High Resolution Radiometer Synthetic Aperture Radar Image Advanced Very High Resolution Radiometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Achard F, Eva HD, Stibig H-J, Mayaux P, Gallego J, Richards T, Malingreau J-P (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297(5583):999–1002. doi: 10.1126/science.1070656 CrossRefGoogle Scholar
  2. Anderson JR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data. United States Government Printing Office, Washington, 964, 28pGoogle Scholar
  3. Arnone RA, Parsons AR (2005) Real-time use of ocean color remote sensing for coastal monitoring. In: Remote sensing of coastal aquatic environments. Dordrecht, Springer, pp 317–337Google Scholar
  4. Ban Y, Jacob A (2013) Object-based fusion of multitemporal multiangle ENVISAT ASAR and HJ-1B multispectral data for urban land-cover mapping. IEEE Trans Geosci Remote Sens 51(4):1998–2006CrossRefGoogle Scholar
  5. Ban Y, Yousif OA (2012) Multitemporal spaceborne SAR data for urban change detection in China. IEEE J Selec Topic Appl Earth Observ Remote Sens (JSARS) 5(4):1087–1094CrossRefGoogle Scholar
  6. Ban Y, Jacob A, Gamba P (2015) Spaceborne SAR data for global urban mapping at 30 m resolution using a robust urban extractor. ISPRS J Photogrammet Remote Sens Spec Issue Glob Land Cov Map 103:28–37CrossRefGoogle Scholar
  7. Belward AS, Skøien JO (2015) Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J Photogramm Remote Sens 103:115–128. http://dx.doi.org/10.1016/j.isprsjprs.2014.03.009
  8. Bontemps S, Defourny P, van Bogaert E, Arino O, Kalogirou V, Perez JR (2011) GlobCover 2009, products description and validation report. European Space Agency/Universite’ Catholique de Louvain, Frascati/Louvain-la-NeuveGoogle Scholar
  9. Bouvet A, Le Toan T, Lam DN (2009) Monitoring of the rice cropping system in the Mekong delta using ENVISAT/ASAR dual polarisation data. IEEE Trans Geosci Remote Sens 47(2):517–526CrossRefGoogle Scholar
  10. Bovolo F, Bruzzone L (2005) A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Trans Geosci Remote Sens 43:2963–2972. doi: 10.1109/TGRS.2005.857987 CrossRefGoogle Scholar
  11. Bovolo F, Bruzzone L (2007a) A split-based approach to unsupervised change detection in large-size multitemporal images: application to tsunami-damage assessment. IEEE Trans Geosci Remote Sens 45:1658–1670. doi: 10.1109/TGRS.2007.895835 CrossRefGoogle Scholar
  12. Bovolo F, Bruzzone L (2007b) A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain. IEEE Trans Geosci Remote Sens 45:218–236. doi: 10.1109/TGRS.2006.885408 CrossRefGoogle Scholar
  13. Bruzzone L, Prieto DF (2000) Automatic analysis of the difference image for unsupervised change detection. IEEE Trans Geosci Remote Sens 38:1171–1182CrossRefGoogle Scholar
  14. Bruzzone L, Serpico SB (1997) An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images. IEEE Trans Geosci Remote Sens 35(4):858–867CrossRefGoogle Scholar
  15. Chen J, Ban Y, Li S (2014) China: open access to earth land-cover map. Nature 514(7523):434–434CrossRefGoogle Scholar
  16. Chen J, Chen J, Liao A, Cao X, Chen L, Chen X, He C, Han G, Peng S, Lu M, Zhang W, Tong X, Mills J (2015) Global land cover mapping at 30 m resolution: a POK-based operational approach. ISPRS J Photogramm Remote Sens 103:7–27CrossRefGoogle Scholar
  17. Davis C, Thau D (2014) Monitoring the world’s forests with global forest watch. https://maps.googleblog.com/2014/02/monitoring-worlds-forests-with-global.html
  18. Dawelbait M, Morari F (2012) Monitoring desertification in a Savannah region in Sudan using Landsat images and spectral mixture analysis. J Arid Environ 80:45–55CrossRefGoogle Scholar
  19. Eklundh L Jönsson P (2015) Chapter 7: TIMESAT: a software package for time-series processing and assessment of vegetation dynamics, pp 141–158. In: Remote sensing time series: revealing land surface dynamics. Springer, Cham, 441ppGoogle Scholar
  20. Eriksson LEB, Borenäs K, Dierking W, Berg A, Santoro M, Pemberton P, Lindh H, Karlson B (2010) Evaluation of new spaceborne SAR sensors for sea-ice monitoring in the Baltic Sea. Can J Remote Sens 36:S56–S73. doi: 10.5589/m10-020 CrossRefGoogle Scholar
  21. Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83(1–2):287–302CrossRefGoogle Scholar
  22. Galford GL, Mustard JF, Melillo J, Gendrin A, Cerri CC, Cerri CEP (2008) Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens Environ 112(2008):576.587Google Scholar
  23. Gamba P, Harold (2009) Global mapping of human settlement: experiences, datasets, and prospects. CRC Press, Boca Raton, 374 ppGoogle Scholar
  24. Gamba P, Dell’Acqua F, Lisini G (2006) Change detection of multitemporal SAR data in urban areas combining feature-based and pixel-based techniques. IEEE Trans Geosci Remote Sens 44:2820–2827. doi: 10.1109/TGRS.2006.879498 CrossRefGoogle Scholar
  25. Gamba P, Dell’Acqua F, Trianni G (2007) Rapid damage detection in the Bam area using multitemporal SAR and exploiting ancillary data. IEEE Trans Geosci Remote Sens 45:1582–1589. doi: 10.1109/TGRS.2006.885392 CrossRefGoogle Scholar
  26. Gong P, Marceau DJ, Howarth PJ (1992) A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sens Environ 40(2):137–151CrossRefGoogle Scholar
  27. Güneralp B, Seto KC (2013) Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ Res Lett 8(1):014025CrossRefGoogle Scholar
  28. Haas J, Ban Y (2014) Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze River Delta and the Pearl River Delta. Int J Appl Earth Obs Geoinf 30:42–55CrossRefGoogle Scholar
  29. Haas J, Furberg D, Ban Y (2015) Satellite monitoring of urbanization and environmental impacts—a comparison of Stockholm and Shanghai. Int J Appl Earth Obs Geoinf 38:138–149, http://dx.doi.org/10.1016/j.jag.2014.12.008 CrossRefGoogle Scholar
  30. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853. doi: 10.1126/science.1244693 CrossRefGoogle Scholar
  31. Hermosilla T, Wulder MA, White JC, Coops NC, Hobart G (2015) An integrated Landsat time series protocol for change detection and generation of annual gap‐free surface reflectance composites. Remote Sens Environ 158:220–234. doi: http://dx.doi.org/10.1016/j.rse.2014.11.005
  32. Hilker T, Lyapustin AI, Tucker CJ, Hall FG, Myneni RB, Wang Y, Bi J, de Moura YM, Sellers PJ (2014) Vegetation dynamics and rainfall sensitivity of the Amazon. Proc Natl Acad Sci U S A 111(45):16041–16046CrossRefGoogle Scholar
  33. Jönsson P, Eklundh L (2004) TIMESAT—a program for analyzing time-series of satellite sensor data. Comput Geosci 30(8):833–845CrossRefGoogle Scholar
  34. Kratzer S, Brockmann C, Moore G. Using MERIS full resolution data to monitor coastal waters – a case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea. Remote Sens Environ 112(5):2284–2300. ISSN 0034–4257. http://dx.doi.org/10.1016/j.rse.2007.10.006
  35. Kuenzer C, Ottinger M, Wegman M, Wikelski M (2014) Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks. Int J Remote Sens 35(18):6599–6647CrossRefGoogle Scholar
  36. Kuenzer C, Dech S, Wagner W (eds) (2015) Remote sensing time series: revealing land surface dynamics. Springer, Cham. 441ppGoogle Scholar
  37. Lasaponara R, Lanorte A (2012) Forward: satellite time series analysis international journal of remote sensing, special issue: satellite time series analysis: from local analysis to a global view. 33:15, 4649–4652Google Scholar
  38. Liang S (2004) Quantitative remote sensing of land surfaces. Wiley, Hoboken, 534 pagesGoogle Scholar
  39. Liu S, Bruzzone L, Bovolo F, Zanetti M, Du P (2015) Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images. IEEE Trans Geosci Remote Sens 53:4363–4378. doi: 10.1109/TGRS.2015.2396686 CrossRefGoogle Scholar
  40. Lu D, Mausel P, Brondízio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25(12):2365–2401. doi: 10.1080/0143116031000139863 CrossRefGoogle Scholar
  41. Mahmud MS, Howell SEL, Geldsetzer T, Yackel J (2016) Detection of melt onset over the northern Canadian Arctic Archipelago sea ice from RADARSAT, 1997–2014. Remote Sens Environ 178:59–69.  http://dx.doi.org/10.1016/j.rse.2016.03.003 CrossRefGoogle Scholar
  42. Martinez J-M, Le Toan T (2007) Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sens Environ 108(3):209–223. doi: 10.1016/j.rse.2006.11.012 CrossRefGoogle Scholar
  43. McNairn H, Kross A, Lapen D, Caves R, Shang J (2014) Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2. Int J Appl Earth Obs Geoinf 28:252–259CrossRefGoogle Scholar
  44. Müller H, Rufin P, Griffiths P, Siqueira AJB, Hostert P (2015) Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens Environ 156:490–499Google Scholar
  45. Olsson L, Eklundh L, Ardö J (2005) A recent greening of the Sahel—trends, patterns and potential causes. J Arid Environ 63(3):556–566CrossRefGoogle Scholar
  46. Pesaresi M et al (2013) A global human settlement layer from optical HR/VHR RS data: concept and first results. IEEE JSTARS 6(5):2102–2131Google Scholar
  47. Pinzon JE, Tucker CJ (2014) A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens 6:6929–6960. doi: 10.3390/rs6086929 CrossRefGoogle Scholar
  48. Planet Labs (2015) Planet Labs at a glance: satellite operations and data pipeline overview. In: ESA living planet symposium, Prague, Czech RepublicGoogle Scholar
  49. Rack W, Rott H (2004) Pattern of retreat and disintegration of the Larsen B ice shelf, Antarctic Peninsula. Ann Glaciol 39(1):505–510CrossRefGoogle Scholar
  50. Rignot E (2001) Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica. J Glaciol 47(157):213–222CrossRefGoogle Scholar
  51. Rignot E, Salas WA, Skole DL (1997) Spaceborne imaging radar MissionMapping deforestation and secondary growth in Rondonia, Brazil, using imaging radar and thematic mapper data. Remote Sens Environ 59(2):167–179.  http://dx.doi.org/10.1016/S0034-4257(96)00150-2 CrossRefGoogle Scholar
  52. Rignot E, Mouginot J, Morligem M, Serossi H, Scheuchl B (2014) Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011, Geophys Res Lett. accepted for publication. doi: 10.1002/2014GL060140
  53. Roerink GJ, Menenti M, Verhoef W (2000) Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int J Remote Sens 21(9):1911–1917Google Scholar
  54. Seto KC, Fragkias M, Güneralp B, Reilly MK (2011) A meta-analysis of global urban land expansion. PLoS One 6(8):e23777. doi: 10.1371/journal.pone.0023777 CrossRefGoogle Scholar
  55. Shao Y, Fan X, Liu H, Xiao J, Ross S, Brisco B, Brown R, Staples G (2001) Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sens Environ 76(3):310–325CrossRefGoogle Scholar
  56. Showstack R (2014) Sentinel satellites initiate new era in Earth observation. Eos 95(26):239–240CrossRefGoogle Scholar
  57. Skidmore AK, Pettorelli N, Coops NC, Geller GN, Hansen M, Lucas R, Mücher CA (2015) Environmental science: agree on biodiversity metrics to track from space. Nature 523(7561):403–405. doi: 10.1038/523403a CrossRefGoogle Scholar
  58. Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon—satellite data from 1978 to 1988. Science 260:1905–1910CrossRefGoogle Scholar
  59. Taubenböck H, Esch T, Felbier A, Wiesner M, Roth A, Dech S (2012) Monitoring urbanization in mega cities from space. Remote Sens Environ 117:162–176CrossRefGoogle Scholar
  60. Terra Bella (2016) https://terrabella.google.com. Accessed on 10 July 2016
  61. Tralli DM, Blom RG, Zlotnicki V, Evans DL (2005) Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J Photogramm Remote Sens 59(4):185–198CrossRefGoogle Scholar
  62. Tucker CJ, Townshend JRG (2000) Strategies for monitoring tropical deforestation using satellite data. Int J Remote Sens 21(6 & 7):1461–1471Google Scholar
  63. Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trend Ecol Evol 18:306–314Google Scholar
  64. Vu TT, Ban Y (2010) Context-based mapping of damaged buildings from high-resolution optical satellite images. Int J Remote Sens 31(13):3411–3425CrossRefGoogle Scholar
  65. Woodcock CE, Allen R, Anderson M, Belward A, Bindschadler R, etc (2008) Free access to Landsat imagery. Science 320(5879):1011–1011Google Scholar
  66. Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE (2012) Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122:2–10, ISSN 0034–4257,  http://dx.doi.org/10.1016/j.rse.2012.01.010
  67. Yang X, Zhang K, Jia B, Ci L (2005) Desertification assessment in China: an overview. J Arid Environ 63(2):517–531CrossRefGoogle Scholar
  68. Yousif O, Ban Y (2013) Improving urban change detection from multitemporal SAR images using PCA-NLM. IEEE Trans Geosci Remote Sens 51:2032–2041. doi: 10.1109/TGRS.2013.2245900 CrossRefGoogle Scholar
  69. Zhu Z, Woodcock CE (2014) Continuous change detection and classification of land cover using all available Landsat data. Remote Sens Environ 144(25):152–171CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Division of GeoinformaticsKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations