Visualizing Dynamic Ambient/Focal Attention with Coefficient \(K\)

Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Using coefficient \(\mathcal{K}\), defined on a parametric scale, derived from processing a traditionally eye-tracked time course of eye movements, we propose a straightforward method of visualizing ambient/focal fixations in both scanpath and heatmap visualizations. The \(\mathcal{K}\) coefficient indicates the difference of fixation duration and following saccade amplitude expressed in standard deviation units, facilitating parametric statistical testing. Positive and negative ordinates of \(\mathcal{K}\) indicate focal or ambient fixations, respectively, and are colored by luminance variation depicting relative intensity of focal fixation.

References

  1. 1.
    Biele, C., Kopacz, A., Krejtz, K.: Shall we care about the user’s feelings? Influence of affect and engagement on visual attention. In: Proceedings of the International Conference on Multimedia, Interaction, Design and Innovation, MIDI’13, pp. 7:1–7:8. ACM, New York (2013). doi:10.1145/2500342.2500349. http://doi.acm.org/10.1145/2500342.2500349
  2. 2.
    Blascheck, T., Kurzhals, K., Raschke, M., Burch, M., Weiskopf, D., Ertl, T.: Start-of-the-art of visualization for eye tracking data. In: Borgo, R., Maciejewski, R., Viola, I. (eds.) EuroGraphics Conference on Visualization (EuroVis). EuroVis STAR—State of the Art Report (2014)Google Scholar
  3. 3.
    Borland, D., Taylor II, R.M.: Rainbow color map (still) considered harmful. IEEE Comput. Graph. Appl. 27 (2), 14–17 (2007)CrossRefGoogle Scholar
  4. 4.
    Breslow, L.A., Ratwani, R.M., Trafton, J.G.: Cognitive models of the influence of color scale on data visualization tasks. Hum. Factors 51 (3), 321–338 (2009)CrossRefGoogle Scholar
  5. 5.
    Brewer, C., Harrower, M., Woodruff, A., Heyman, D.: Colorbrewer 2.0: color advice for maps. Online Resource (2009). http://colorbrewer2.org. Last accessed Dec 2010
  6. 6.
    Duchowski, A.T., Price, M.M., Meyer, M., Orero, P.: Aggregate gaze visualization with real-time heatmaps. In: Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA’12, pp. 13–20. ACM, New York (2012). doi:10.1145/2168556.2168558. http://doi.acm.org/10.1145/2168556.2168558
  7. 7.
    Elias, G., Sherwin, G., Wise, J.: Eye movements while viewing NTSC format television. Technical report, SMPTE Psychophysics Subcommittee (1984)Google Scholar
  8. 8.
    Follet, B., Le Meur, O., Baccino, T.: New insights on ambient and focal visual fixations using an automatic classification algorithm. i-Perception 2 (6), 592–610 (2011)Google Scholar
  9. 9.
    Irwin, D.E., Zelinsky, G.J.: Eye movements and scene perception: memory for things observed. Percept. Psychophys. 64, 882–895 (2002)CrossRefGoogle Scholar
  10. 10.
    Krejtz, I., Szarkowska, A., Krejtz, K., Walczak, A., Duchowski, A.: Audio description as an aural guide of children’s visual attention: evidence from an eye-tracking study. In: ETRA’12: Proceedings of the 2012 Symposium on Eye Tracking Research & Applications, ETRA’12, pp. 99–106. ACM, New York (2012). doi:10.1145/2168556.2168572Google Scholar
  11. 11.
    Krejtz, K., Duchowski, A., Krejtz, I., Szarkowska, A., Kopacz, A.: Discerning ambient/focal attention with coefficient \(\mathcal{K}\). Trans. Appl. Percept. 13 (3), Article 11 (2016). http://dx.doi.org/10.1145/2896452
  12. 12.
    Krejtz, K., Duchowski, A.T., Çöltekin, A.: High-level gaze metrics from map viewing: charting ambient/focal visual attention. In: Kiefer, P., Giannopoulos, I., Raubal, M., Krüger, A. (eds.) Proceedings of the 2nd International Workshop on Eye Tracking for Spatial Research (ET4S), Vienna (2014)Google Scholar
  13. 13.
    LimeSurvey Project Team/Carsten Schmitz: LimeSurvey: an open source survey tool. LimeSurvey Project, Hamburg (2012). http://www.limesurvey.org
  14. 14.
    Lin, S., Fortuna, J., Kulkarni, C., Stone, M., Heer, J.: Selecting semantically-resonant colors for data visualization. In: Proceedings of the 15th Eurographics Conference on Visualization, EuroVis’13, pp. 401–410. Eurographics/John Wiley, Chichester (2013). doi:10.1111/cgf.12127. http://dx.doi.org/10.1111/cgf.12127
  15. 15.
    Mello-Thoms, C., Nodine, C.F., Kundel, H.L.: What attracts the eye to the location of missed and reported breast cancers? In: ETRA’02: Proceedings of the 2002 Symposium on Eye Tracking Research & Applications, pp. 111–117. ACM, New York (2002). http://doi.acm.org/10.1145/507072.507095
  16. 16.
    Mital, P.K., Smith, T.J., Hill, R.L., Henderson, J.M.: Clustering of gaze during dynamic scene viewing is predicted by motion. Cogn. Comput. 3, 5–24 (2011)CrossRefGoogle Scholar
  17. 17.
    Nodine, C.F., Kundel, H.L., Toto, L.C., Krupinski, E.A.: Recording and analyzing eye-position data using a microcomputer workstation. Behav. Res. Methods 24 (3), 475–485 (1992)CrossRefGoogle Scholar
  18. 18.
    Nothdurft, H.C.: Focal attention in visual search. Vis. Res. 39, 2305–2310 (1999)CrossRefGoogle Scholar
  19. 19.
    Pannasch, S., Helmert, J.R., Roth, K., Herbold, A.K., Walter, H.: Visual fixation durations and saccade amplitudes: shifting relationship in a variety of conditions. J. Eye Mov. Res. 2 (2), 1–19 (2008)Google Scholar
  20. 20.
    Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. Technical report, MIT-CSAIL-TR-2006-073, Massachusetts Institute of Technology (2006)Google Scholar
  21. 21.
    Pomplun, M., Ritter, H., Velichkovsky, B.: Disambiguating complex visual information: towards communication of personal views of a scene. Perception 25 (8), 931–948 (1996)CrossRefGoogle Scholar
  22. 22.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2011)Google Scholar
  23. 23.
    Ratwani, R.M., Trafton, J.G., Boehm-Davis, D.A.: Thinking graphically: connecting vision and cognition during graph comprehension. J. Exp. Psychol. Appl. 14 (1), 36–49 (2008)CrossRefGoogle Scholar
  24. 24.
    Rogowitz, B., Treinish, L.: Data visualization: the end of the rainbow. IEEE Spectr. 35 (12), 52–59 (1998)CrossRefGoogle Scholar
  25. 25.
    Treisman, A., Gelade, G.: A feature integration theory of attention. Cogn. Psychol. 12, 97–136 (1980)CrossRefGoogle Scholar
  26. 26.
    Unema, P.J.A., Pannasch, S., Joos, M., Velichkovsky, B.: Time course of information processing during scene perception. Vis. Cogn. 12 (3), 473–494 (2005)CrossRefGoogle Scholar
  27. 27.
    van Gisbergen, M.S., van der Most, J., Aelen, P.: Visual attention to online search engine results. Technical report, De Vos & Jansen in cooperation with Checkit (2007). http://www.iprospect.nl/wp-content/themes/iprospect/pdf/checkit/eyetracking_research.pdf. Last accessed Dec 2011
  28. 28.
    Velichkovsky, B.M., Joos, M., Helmert, J.R., Pannasch, S.: Two visual systems and their eye movements: evidence from static and dynamic scene perception. In: CogSci 2005: Proceedings of the XXVII Conference of the Cognitive Science Society, Stresa, pp. 2283–2288 (2005)Google Scholar
  29. 29.
    Vitak, S.A., Ingram, J.E., Duchowski, A.T., Ellis, S., Gramopadhye, A.K.: Gaze-augmented think-aloud as an aid to learning. In: Proceedings of the SIGCHI Conference on Human Factors in computing systems, CHI’12, pp. 1253–1262. ACM, New York (2012). doi:http://doi.acm.org/10.1145/1124772.1124961. http://doi.acm.org/10.1145/1124772.1124961
  30. 30.
    Wooding, D.S.: Fixation maps: quantifying eye-movement traces. In: ETRA’02: Proceedings of the 2002 Symposium on Eye Tracking Research & Applications, pp. 31–36. ACM, New York (2002). doi:http://doi.acm.org/10.1145/507072.507078

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Clemson UniversityClemsonUSA
  2. 2.Department of PsychologySWPS University of Social Sciences and HumanitiesWarsawPoland

Personalised recommendations