Using Genetic Programming for Software Reliability

  • Doron PeledEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10012)


Software reliability methods, such as testing and model checking, are well integrated into the software development process. They are complemented by safety enforcement mechanisms such as run time verification. However, even with a wealth of techniques and methodologies for developing reliable systems, it is still quite challenging to eliminate all the bugs from software systems. One of the reasons is the magnitude of software systems, having to handle a very large number of use cases and possible interactions with an environment or between concurrent components. Genetic algorithms and programming provide a powerful heuristic search that involves randomization based on operators that simulate natural reproduction. We show various ways where genetic algorithms and programming can be integrated with formal methods to enhance software reliability.


Genetic Algorithm Model Check Genetic Programming Test Suite Critical Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett. 22(6), 307–309 (1986)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming - An Introduction; On the Automatic Evolution of Computer Programs and its Applications. 3rd edn. Morgan Kaufmann, dpunkt.verlag (2001)Google Scholar
  3. 3.
    Bar-David, Y., Taubenfeld, G.: Automatic discovery of mutual exclusion algorithms. In: PODC, p. 305 (2003)Google Scholar
  4. 4.
    Chellapilla, K.: Evolving computer programs without subtree crossover. IEEE Trans. Evol. Comput. 1(3), 209–216 (1997)CrossRefGoogle Scholar
  5. 5.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). doi: 10.1007/BFb0025774 CrossRefGoogle Scholar
  6. 6.
    Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using partial order techniques. STTT 2(3), 279–287 (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dijkstra, E.W.: Solution of a problem in concurrent programming control. Commun. ACM 8(9), 569 (1965)CrossRefGoogle Scholar
  8. 8.
    Godefroid, P., Khurshid, S.: Exploring very large state spaces using genetic algorithms. STTT 6(2), 117–127 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Grosu, R., Smolka, S.A.: Monte carlo model checking. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-31980-1_18 CrossRefGoogle Scholar
  10. 10.
    Harman, M., Jones, B.F.: Software engineering using metaheuristic innovative algorithms: workshop report. Inf. Softw. Technol. 43(14), 905–907 (2001)CrossRefGoogle Scholar
  11. 11.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)Google Scholar
  12. 12.
    Ince, D.C. (ed.): Mechanical Intelligence (collected works of A.M. Turing). North-Holland Publishing Co., Amsterdam (1992)Google Scholar
  13. 13.
    Johnson, C.G.: Genetic programming with fitness based on model checking. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-71605-1_11 CrossRefGoogle Scholar
  14. 14.
    Katz, G., Peled, D.: Genetic programming and model checking: synthesizing new mutual exclusion algorithms. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 33–47. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88387-6_5 CrossRefGoogle Scholar
  15. 15.
    Katz, G., Peled, D.: Model checking-based genetic programming with an application to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78800-3_11 CrossRefGoogle Scholar
  16. 16.
    Katz, G., Peled, D.: Synthesizing solutions to the leader election problem using model checking and genetic programming. In: Namjoshi, K., Zeller, A., Ziv, A. (eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19237-1_13 CrossRefGoogle Scholar
  17. 17.
    Katz, G., Peled, D.: Code mutation in verification and automatic code correction. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 435–450. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12002-2_36 CrossRefGoogle Scholar
  18. 18.
    Katz, G., Peled, D.: MCGP: a software synthesis tool based on model checking and genetic programming. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 359–364. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15643-4_28 CrossRefGoogle Scholar
  19. 19.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  20. 20.
    Koza, J.R.: Human-competitive results produced by genetic programming. Genet. Program. Evol. Mach. 11(3–4), 251–284 (2010)CrossRefGoogle Scholar
  21. 21.
    Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: Proceedings of 16th Annual IEEE Symposium on Logic in Computer Science, Boston, 16–19 June 2001, pp. 389–398 (2001)Google Scholar
  22. 22.
    Manna, Z., Pnueli, A.: How to cook a temporal proof system for your pet language. In: Conference Record of the Tenth Annual ACM Symposium on Principles of Programming Languages, Austin, pp. 141–154, January 1983Google Scholar
  23. 23.
    Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic specifications. ACM Trans. Program. Lang. Syst. 6(1), 68–93 (1984)CrossRefzbMATHGoogle Scholar
  24. 24.
    Myers, G.: The Art of Software Testing. Wiley, New York (1979)zbMATHGoogle Scholar
  25. 25.
    Perez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing multiparty synchronization. Concurr. Pract. Exp. 16(12), 1173–1206 (2004)CrossRefGoogle Scholar
  26. 26.
    Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: FOCS, pp. 746–757 (1990)Google Scholar
  27. 27.
    Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceBar Ilan UniversityRamat GanIsrael

Personalised recommendations