Advertisement

Finite-Trace Linear Temporal Logic: Coinductive Completeness

  • Grigore RoşuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10012)

Abstract

Linear temporal logic (LTL) is suitable not only for infinite-trace systems, but also for finite-trace systems. Indeed, LTL is frequently used as a trace specification formalism in runtime verification. The completeness of LTL with only infinite or with both infinite and finite traces has been extensively studied, but similar direct results for LTL with only finite traces are missing. This paper proposes a sound and complete proof system for finite-trace LTL. The axioms and proof rules are natural and expected, except for one rule of coinductive nature, reminiscent of the Gödel-Löb axiom. A direct decision procedure for finite-trace LTL satisfiability, a PSPACE-complete problem, is also obtained as a corollary.

Keywords

Modal Logic Propositional Logic Proof System Linear Temporal Logic Proof Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Artemov, S.N., Beklemishev, L.D.: Provability logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. XIII, 2nd edn, pp. 181–360. Springer, Berlin (2005)Google Scholar
  2. 2.
    Bauer, A., Leucker, M., Schallhart, C.: Comparing ltl semantics for runtime verification. J. Log. Comput. 20(3), 651–674 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bergstra, J.A., Tucker, J.V.: Initial and final algebra semantics for data type specifications: two characterization theorems. SIAM J. Comput. 12(2), 366–387 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ştefănescu, A., Ciobâcă, C., Mereuţă, R., Moore, B.M., Şerbănută, T.F., Roşu, G.: All-path reachability logic. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 425–440. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    D’Amorim, M., Roşu, G.: Efficient monitoring of omega-languages. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Diekert, V., Gastin, P.: Ltl is expressively complete for mazurkiewicz traces. J. Comput. Syst. Sci. 64(2), 396–418 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal properties on running programs. In: ASE, pp. 412–416. IEEE Computer Society (2001)Google Scholar
  9. 9.
    Goldblatt, R.: Logics of Time and Computation. CSLI Lecture Notes, vol. 7, 2nd edn. Center for the Study of Language and Information, Stanford (1992)zbMATHGoogle Scholar
  10. 10.
    Goldblatt, R.: Mathematical modal logic: a view of its evolution. J. Appl. Log. 1(5–6), 309–392 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Havelund, K., Rosu, G.: Efficient monitoring of safety properties. Int. J. Softw. Tools Technol. Transf. (STTT) 6, 158–173 (2004)CrossRefGoogle Scholar
  12. 12.
    Hoare, C.A.R.: An axiomatic basis for computer programming. CACM 12(10), 576–580 (1969)CrossRefzbMATHGoogle Scholar
  13. 13.
    Jard, C., Jeron, T.: On-line model-checking for finite linear temporal logic specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 189–196. Springer, Heidelberg (1990). doi: 10.1007/3-540-52148-8_16 CrossRefGoogle Scholar
  14. 14.
    Kamp, H.W.: Tense logic and the theory of linear order. Ph.D. thesis, University of California, Los Angeles (1968)Google Scholar
  15. 15.
    Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance based on formal specifications. In: Arabnia, H.R. (ed.) PDPTA, pp. 279–287. CSREA Press, Las Vegas (1999)Google Scholar
  16. 16.
    Lichtenstein, O., Pnueli, A.: Propositional temporal logics: decidability and completeness. Log. J. IGPL 8(1), 55–85 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.) Log. Progr. LNCS, vol. 193, pp. 196–218. Springer, Berlin, Heidelberg (1985)CrossRefGoogle Scholar
  18. 18.
    Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)Google Scholar
  19. 19.
    Roşu, G., Ştefănescu, A., Ciobâcă, C., Moore, B.M.: One-path reachability logic. In: Proceedings of the 28th Symposium on Logic in Computer Science (LICS 2013), pp. 358–367. IEEE, June 2013Google Scholar
  20. 20.
    Rosu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Autom. Softw. Eng. 12, 151–197 (2005). doi: 10.1007/s10515-005-6205-y CrossRefGoogle Scholar
  21. 21.
    Rosu, G., Stefanescu, A.: Checking reachability using matching logic. In: Proceedings of the 27th Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2012), pp. 555–574. ACM (2012)Google Scholar
  22. 22.
    Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32(3), 733–749 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sulzmann, M., Zechner, A.: Constructive finite trace analysis with linear temporal logic. In: Brucker, A.D., Julliand, J. (eds.) TAP 2012. LNCS, vol. 7305, pp. 132–148. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Thiagarajan, P., Walukiewicz, I.: An expressively complete linear time temporal logic for mazurkiewicz traces. Inf. Comput. 179(2), 230–249 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.University of IllinoisChampaignUSA

Personalised recommendations