Advertisement

A Region Based Convolutional Network for Tumor Detection and Classification in Breast Mammography

  • Ayelet Akselrod-BallinEmail author
  • Leonid Karlinsky
  • Sharon Alpert
  • Sharbell Hasoul
  • Rami Ben-Ari
  • Ella Barkan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10008)

Abstract

This paper addresses the problem of detection and classification of tumors in breast mammograms. We introduce a novel system that integrates several modules including a breast segmentation module and a fibroglandular tissue segmentation module into a modified cascaded region-based convolutional network. The method is evaluated on a large multi-center clinical dataset and compared to ground truth annotated by expert radiologists. Preliminary experimental results show the high accuracy and efficiency obtained by the suggested network structure. As the volume and complexity of data in healthcare continues to accelerate generalizing such an approach may have a profound impact on patient care in many applications.

References

  1. 1.
    Jemal, A., Siegel, R., et al.: Cancer statistics, 2008. CA Cancer J. Clin. 58(2), 71–96 (2008)CrossRefGoogle Scholar
  2. 2.
    American Cancer Society: Cancer facts and figures, Atlanta, GA (2015)Google Scholar
  3. 3.
    Narváez, F., Díaz, G., Romero, E.: Automatic BI-RADS description of mammographic masses. In: Martí, J., Oliver, A., Freixenet, J., Martí, R. (eds.) IWDM 2010. LNCS, vol. 6136, pp. 673–681. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the (NIPS 2012), pp. 1097–1105 (2012)Google Scholar
  5. 5.
    Giger, M.L., Karssemeijer, N., Schnabel, J.A.: Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer. Annu. Rev. Biomed. Eng. 15, 327–357 (2013)CrossRefGoogle Scholar
  6. 6.
    Oliver, A., Freixenet, J., Marti, J., Perez, E., Pont, J., et al.: A review of automatic mass detection and segmentation in mammographic images. Med. Image Anal. 14, 87–110 (2010)CrossRefGoogle Scholar
  7. 7.
    Carneiro, G., Nascimento, J., Bradley, A.P.: Unregistered multiview mammogram anaysis with pre-trained deep learning models. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 652–660. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  8. 8.
    Arevalo, J., Gonzales, F.A., Ramos-Pollán, R., Oliveira, J.L., Lopez, M.A.G.: Representation learning for mammography mass lesion classification with convolutional neural networks. Comput. Methods Programs Biomed. 127, 248–257 (2016)CrossRefGoogle Scholar
  9. 9.
    Dhungel, N., Carneiro, G., Bradley, A.: Automated mass detection from mammograms using deep learning and random forest. In: DICTA (2015)Google Scholar
  10. 10.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer Vision and Pattern Recognition (CVPR), pp. 580–587 (2014)Google Scholar
  11. 11.
    Girshickv, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015)Google Scholar
  12. 12.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)Google Scholar
  13. 13.
    Ben-Ari, R., Zlotnick, A., Hashoul, S.: A weakly labeled approach for breast tissue segmentation and breast density estimation in digital mammography. In: ISBI (2016)Google Scholar
  14. 14.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)Google Scholar
  15. 15.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding (2014). arXiv:1408.5093
  16. 16.
    Heath, M., Bowyer, K., et al.: The digital database for screening mammography. In: Proceedings of the 5th International Workshop on Digital Mammography, pp. 212–218 (2000)Google Scholar
  17. 17.
    Moreira, I.C., Amaral, I., et al.: Inbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ayelet Akselrod-Ballin
    • 1
    Email author
  • Leonid Karlinsky
    • 1
  • Sharon Alpert
    • 1
  • Sharbell Hasoul
    • 1
  • Rami Ben-Ari
    • 1
  • Ella Barkan
    • 1
  1. 1.IBM Research - HaifaHaifaIsrael

Personalised recommendations