Trip Planning Queries for Subgroups in Spatial Databases

  • Tanzima HashemEmail author
  • Tahrima Hashem
  • Mohammed Eunus Ali
  • Lars Kulik
  • Egemen Tanin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9877)


In this paper, we introduce a novel type of trip planning queries, a subgroup trip planning (SGTP) query that allows a group to identify the subgroup and the points of interests (POIs) from each required type (e.g., restaurant, shopping center, movie theater) that have the minimum aggregate trip distance for any subgroup size. The trip distance of a user starts at the user’s source location and ends at the user’s destination via the POIs. The computation of POI set for all possible subgroups with the straightforward application of group trip planning (GTP) algorithms would be prohibitively expensive. We propose an algorithm to compute answers for different subgroup size concurrently with less query processing overhead. We focus on both minimizing the total and maximum trip distance of the subgroup. We show the efficiency of our algorithms in experiments using both real and synthetic datasets.



This research is partially supported by the ICT Division - Government of the People’s Republic of Bangladesh.


  1. 1.
    Ahmadi, E., Nascimento, M.A.: A mixed breadth-depth first search strategy for sequenced group trip planning queries. In: MDM, pp. 24–33 (2015)Google Scholar
  2. 2.
    Ali, M.E., Tanin, E., Scheuermann, P., Nutanong, S.: Spatial consensus queries in a collaborative environment. ACM Trans. Spat. Algorithms Syst. 2(1), 3 (2016)Google Scholar
  3. 3.
    Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust access method for points and rectangles. SIGMOD Rec. 19(2), 322–331 (1990)CrossRefGoogle Scholar
  4. 4.
    Deng, K., Sadiq, S.W., Xiaofang Zhou, H., Xu, H., Fung, G.P.C., Yansheng, L.: On group nearest group query processing. IEEE TKDE 24(2), 295–308 (2012)Google Scholar
  5. 5.
    Hashem,T., Ali, M.E., Kulik, L., Tanin, E., Quattrone, A.: Protecting privacy for group nearest neighbor queries with crowdsourced data and computing. In: UbiComp, pp. 559–562 (2013)Google Scholar
  6. 6.
    Hashem, T., Barua, S., Ali, M.E., Kulik, L., Tanin, E.: Efficient computation of trips with friends and families. In: CIKM, pp. 931–940 (2015)Google Scholar
  7. 7.
    Hashem, T., Hashem, T., Ali, M.E., Kulik, L.: Group trip planning queries in spatial databases. In: Nascimento, M.A., Sellis, T., Cheng, R., Sander, J., Zheng, Y., Kriegel, H.-P., Renz, M., Sengstock, C. (eds.) SSTD 2013. LNCS, vol. 8098, pp. 259–276. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Hashem, T., Kulik, L.: Safeguarding location privacy in wireless ad-hoc networks. In: Ubicomp, pp. 372–390 (2007)Google Scholar
  9. 9.
    Hashem, T., Kulik, L., Zhang, R.: Privacy preserving group nearest neighbor queries. In: EDBT, pp. 489–500 (2010)Google Scholar
  10. 10.
    Li, F., Yao, B., Kumar, P.: Group enclosing queries. IEEE TKDE 23(10), 1526–1540 (2011)Google Scholar
  11. 11.
    Li, Y., Li, F., Yi, K., Yao, B., Wang, M.: Flexible aggregate similarity search. In: SIGMOD, pp. 1009–1020 (2011)Google Scholar
  12. 12.
    Namnandorj, S., Chen, H., Furuse, K., Ohbo, N.: Efficient bounds in finding aggregate nearest neighbors. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 693–700. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: ICDE, p. 301 (2004)Google Scholar
  14. 14.
    Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases. TODS 30(2), 529–576 (2005)CrossRefGoogle Scholar
  15. 15.
    Samrose, S., Hashem, T., Barua, S., Ali, M.E., Uddin, M.H., Mahmud, M.I.: Efficient computation of group optimal sequenced routes in road networks. In: MDM, pp. 122–127 (2015)Google Scholar
  16. 16.
    Yan, D., Zhao, Z., Ng, W.: Efficient processing of optimal meeting point queries in euclidean space and road networks. Knowl. Inf. Syst. 42(2), 319–351 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Tanzima Hashem
    • 1
    Email author
  • Tahrima Hashem
    • 2
  • Mohammed Eunus Ali
    • 1
  • Lars Kulik
    • 3
  • Egemen Tanin
    • 3
  1. 1.Department of Computer Science and EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
  2. 2.Department of Computer Science and EngineeringDhaka UniversityDhakaBangladesh
  3. 3.Department of Computing and Information SystemUniversity of MelbourneMelbourneAustralia

Personalised recommendations