Advertisement

Social Welfare in One-Sided Matching Mechanisms

  • George Christodoulou
  • Aris Filos-Ratsikas
  • Søren Kristoffer Stiil Frederiksen
  • Paul W. Goldberg
  • Jie Zhang
  • Jinshan Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10002)

Abstract

We study the Price of Anarchy of mechanisms for the well-known problem of one-sided matching, or house allocation, with respect to the social welfare objective. We consider both ordinal mechanisms, where agents submit preference lists over the items, and cardinal mechanisms, where agents may submit numerical values for the items being allocated. We present a general lower bound of \(\varOmega (\sqrt{n})\) on the Price of Anarchy, which applies to all mechanisms. We show that two well-known mechanisms, Probabilistic Serial, and Random Priority, achieve a matching upper bound. We extend our lower bound to the Price of Stability of a large class of mechanisms that satisfy a common proportionality property, and show stronger bounds on the Price of Anarchy of all deterministic mechanisms.

Keywords

Nash Equilibrium Strategy Profile Valuation Function Safe Strategy Preference List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Piotr Krysta for useful discussion.

References

  1. 1.
    Abdulkadiroğlu, A., Sönmez, T., Markets, M.: Theory and practice. In: Advances in Economics and Econometrics (Tenth World Congress), pp. 3–47 (2013)Google Scholar
  2. 2.
    Adamczyk, M., Sankowski, P., Zhang, Q.: Efficiency of truthful and symmetric mechanisms in one-sided matching. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 13–24. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44803-8_2 Google Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aziz, H., Brandt, F., Brill, M.: The computational complexity of random serial dictatorship. Econ. Lett. 121(3), 341–345 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Aziz, H., Gaspers, S., Mackenzie, S., Mattei, N., Narodytska, N., Walsh, T.: Equilibria under the probabilistic serial rule. arXiv preprint arXiv:1502.04888 (2015)
  6. 6.
    Aziz, H., Gaspers, S., Mackenzie, S., Mattei, N., Narodytska, N., Walsh, T.: Manipulating the probabilistic serial rule. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 1451–1459. International Foundation for Autonomous Agents and Multiagent Systems (2015)Google Scholar
  7. 7.
    Aziz, H., Gaspers, S., Mattei, N., Narodytska, N., Walsh, T.: Strategic aspects of the probabilistic serial rule for the allocation of goods. arXiv preprint arXiv: 1401.6523 (2014)
  8. 8.
    Bhalgat, A., Chakrabarty, D., Khanna, S.: Social welfare in one-sided matching markets without money. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011. LNCS, vol. 6845, pp. 87–98. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22935-0_8 CrossRefGoogle Scholar
  9. 9.
    Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem. J. Econ. Theory 100, 295–328 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Brams, S.J., Feldman, M., Lai, J.K., Morgenstern, J., Procaccia, A.D.: On maxsum fair cake divisions. In: AAAI (2012)Google Scholar
  11. 11.
    Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., Kyropoulou, M.: The efficiency of fair division. Theory Comput. Syst. 50(4), 589–610 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chakrabarty, D., Swamy, C.: Welfare maximization and truthfulness in mechanism design with ordinal preferences. In: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, pp. 105–120 (2014)Google Scholar
  13. 13.
    Christodoulou, G., Kovács, A., Schapira, M.: Bayesian combinatorial auctions. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 820–832. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-70575-8_67 CrossRefGoogle Scholar
  14. 14.
    Ekici, O., Kesten, O.: On the ordinal nash equilibria of the probabilistic serial mechanism. Technical report, working paper, Tepper School of Business, Carnegie Mellon University (2010)Google Scholar
  15. 15.
    Filos-Ratsikas, A., Frederiksen, S.K.S., Zhang, J.: Social welfare in one-sided matchings: random priority and beyond. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 1–12. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44803-8_1 Google Scholar
  16. 16.
    Guo, M., Conitzer, V.: Strategy-proof allocation of multiple items between two agents without payments or priors. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 881–888 (2010)Google Scholar
  17. 17.
    Hashimoto, T., Hirata, D., Kesten, O., Kurino, M., Utku Ünver, M.: Two axiomatic approaches to the probabilistic serial mechanism. Theor. Econ. 9(1), 253–277 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions. J. Polit. Econ. 87(2), 293–314 (1979)CrossRefMATHGoogle Scholar
  19. 19.
    Katta, A.-K., Sethuraman, J.: A solution to the random assignment problem on the full preference domain. J. Econ. Theory 131(1), 231–250 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kesten, O: Probabilistic serial and top trading cycles from equal division for the random assignment problem. Technical report, mimeo (2006)Google Scholar
  21. 21.
    Kojima, F., Manea, M.: Incentives in the probabilistic serial mechanism. J. Econ. Theory 145(1), 106–123 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999). doi: 10.1007/3-540-49116-3_38 CrossRefGoogle Scholar
  23. 23.
    Krysta, P., Manlove, D., Rastegari, B., Zhang, J.: Size versus truthfulness in the house allocation problem. In: Proceedings of the 15th ACM Conference on Economics and Computation, pp. 453–470. ACM (2014)Google Scholar
  24. 24.
    Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money. In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 177–186. ACM (2009)Google Scholar
  25. 25.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 513–522. ACM (2009)Google Scholar
  26. 26.
    Syrgkanis, V., Tardos, E.: Composable and efficient mechanisms. In: STOC 2013: Proceedings of the 45th Symposium on Theory of Computing, November 2013Google Scholar
  27. 27.
    Von Neumann, J., Morgenstern, O.: Theory of games and economic behavior (60th Anniversary Commemorative Edition). Princeton University Press, Princeton (2007)CrossRefGoogle Scholar
  28. 28.
    Zhou, L.: On a conjecture by gale about one-sided matching problems. J. Econ. Theory 52, 123–135 (1990)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • George Christodoulou
    • 1
  • Aris Filos-Ratsikas
    • 2
  • Søren Kristoffer Stiil Frederiksen
    • 3
  • Paul W. Goldberg
    • 2
  • Jie Zhang
    • 2
  • Jinshan Zhang
    • 1
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.Department of Computer ScienceUniversity of OxfordOxfordUK
  3. 3.Department of Computer ScienceAarhus UniversityAarhusDenmark

Personalised recommendations