Molecular Epidemiology of Rickettsial Diseases



This chapter summarizes the classical methods used to investigate rickettsioses initially discovered and characterized in the United States with an emphasis on their role in understanding their epidemiology. More recent molecular methodologies used to diagnose and characterize rickettsioses and rickettsial agents are then presented. New epidemiological insights into rickettsioses that have been obtained by using these molecular tools are then reviewed. Finally, the limitations of contemporary tools used in the molecular epidemiology of rickettsioses are examined and discussed in the context of new opportunities for improvement of these current approaches.


Molecular epidemiology Rickettsiae Rickettsial diseases Surveillance Pathogen discovery Biomarkers 


  1. Case definition (1990). Case definitions for public health surveillance. Mortality and Morbidity Weekly Reports 39(19): RR-13.Google Scholar
  2. Case definition (2010). CSTE Position Statement Number: 09-ID-16. Spotted Fever Rickettsiosis. 2010 Case Definition. Retrieved May 16, 2012, from
  3. Abramowicz KF, Rood MP, Krueger L, Eremeeva ME (2011). Urban focus of Rickettsia typhi and Rickettsia felis in Los Angeles, California. Vector Borne Zoonotic Dis 11: 979–984.PubMedCrossRefGoogle Scholar
  4. Abramowicz KF, Wekesa JW, Nwadike CN, Zambrano ML, Karpathy SE, et al. (2012). Rickettsia felis in cat fleas, Ctenocephalides felis parasitizing opossums, San Bernardino County, California. Med Vet Entomol 26: 458–462.PubMedCrossRefGoogle Scholar
  5. Adjemian J, Krebs J, Mandel E, McQuiston J (2009). Spatial clustering by disease severity among reported Rocky Mountain spotted fever cases in the United States, 2001-2005. Am J Trop Med Hyg 80: 72–77.PubMedGoogle Scholar
  6. Agnew DH. (1890). The medical history of the Philadelphia Almshouse. Philadelphia Hospital Reports I: 2-55.Google Scholar
  7. Andersson, S. G., A. Zomorodipour, J. O. Andersson, T. Sicheritz-Pontn, U. C. Alsmark, et al. (1998). The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140.PubMedCrossRefGoogle Scholar
  8. Andersson SG, Zomorodipour A, Winkler HH, Kurland CG (1995). Unusual organization of the rRNA genes in Rickettsia prowazekii. J Bacteriol 177: 4171-4175.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Angelakis E, Mediannikov O, Parola P, Raoult D (2016). Rickettsia felis: the complex journey of an emergent human pathogen. Trends Parasitol. 32: 554-564.Google Scholar
  10. Apperson C, Engber B, Nicholson W, Mead D, Engel J, et al. (2008). Tick-borne diseases in North Carolina: is “Rickettsia amblyommii” a possible cause of rickettsiosis reported as Rocky Mountain spotted fever? Vector Borne Zoonotic Dis 8: 597–606.PubMedCrossRefGoogle Scholar
  11. Archibald LK, Sexton DJ (1995). Long-term sequelae of Rocky Mountain spotted fever. Clin Infect Dis 20: 1122–1125.PubMedCrossRefGoogle Scholar
  12. Balayeva N (1989). Approaches to the molecular epidemiology of rickettsioses. Eur J Epidemiol 5: 414–419.PubMedCrossRefGoogle Scholar
  13. Beeler E, Abramowicz KF, Zambrano ML, Sturgeon MM, Khalaf N, et al. (2011). A focus of dogs and Rickettsia massiliae-infected Rhipicephalus sanguineus in California. Am J Trop Med Hyg 84: 244–249.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bergeron JW, Braddom RL, Kaelin DL (1997). Persisting impairment following Rocky Mountain Spotted Fever: a case report. Arch Phys Med Rehabil 78: 1277–1280.PubMedCrossRefGoogle Scholar
  15. Bhavnani SK, Drake J, Bellala G, Dang B, Peng BH, et al. JP (2013). How cytokines co-occur across rickettsioses patients: from bipartite visual analytics to mechanistic inferences of a cytokine storm. AMIA Jt Summits Transl Sci Proc 2013: 15–19.Google Scholar
  16. Biggs HM, Behravech CB, Bradley KK, Dahlgren FS, Drexler NA, et al. (2016). Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis - United States. A practical guide for health care professionals. MMWR RR 65: 1–44.Google Scholar
  17. Billeter SA, Blanton HL, Little SE, Levy MG, Breitschwerdt EB (2007). Detection of Rickettsia amblyommii in association with a tick bite rash. Vector Borne Zoonotic Dis 7: 607–610.PubMedCrossRefGoogle Scholar
  18. Billeter SA, Diniz PP, Jett LA, Wournell AL, Kjemtrup AM, et al. (2016). Detection of Rickettsia species in fleas collected from cats in regions endemic and nonendemic for flea-borne rickettsioses in California. Vector Borne Zoonotic Dis 16: 151–156.PubMedCrossRefGoogle Scholar
  19. Bishop-Lilly KA, Ge H, Butani A, Osborne B, Verratti K, et al. (2013). Genome sequencing of four strains of Rickettsia prowazekii, the causative agent of epidemic typhus, including one flying squirrel isolate. Genome Announc 1(3).Google Scholar
  20. Blanton LS, Lea AS, Kelly BC, Walker DH (2015a). An unusual cutaneous manifestation in a patient with murine typhus. Am J Trop Med Hyg 93: 1164–1167.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Blanton LS, Vohra RF, Bouyer DH, Walker DH (2015b). Reemergence of murine typhus in Galveston, Texas, USA, (2013). Emerg Infect Dis 21: 484–486.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Boretti FS, Perreten A, Meli ML, Cattori V, Willi B, et al. (2009). Molecular investigations of Rickettsia helvetica infection in dogs, foxes, humans, and Ixodes ticks. Appl Environ Microbiol 75: 3230–3237.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bouquet J, Soloski MJ, Swei A, Cheadle C, Federman S, et al. (2016). Longitudinal transcriptome analysis reveals a sustained differential gene expression signature in patients treated for acute Lyme disease. MBio 7: e00100-00116.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bozeman FM, Masiello SA, Williams MS, Elisberg BL (1975). Epidemic typhus rickettsiae isolated from flying squirrels. Nature 255: 545–547.PubMedCrossRefGoogle Scholar
  25. Budachetri K, Browning RE, Adamson SW, Dowd SE, Chao CC, et al. (2014). An insight into the microbiome of the Amblyomma maculatum (Acari: Ixodidae). J Med Entomol 51: 119–129.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Burgdorfer W. (1988). Ecological and epidemiological considerations of Rocky Mountain spotted fever and scrub typhus. In: Walker DH, editor. Biology of Rickettsial Diseases. Boca Raton, FL: CRC Press. p. 33–50.Google Scholar
  27. Carr SB, Bergamo DF, Emmanuel PJ, Ferreira JA (2014). Murine typhus as a cause of cognitive impairment: case report and a review of the literature. Pediatr Neurol 50: 265–268.PubMedCrossRefGoogle Scholar
  28. Chapman AS, Swerdlow DL, Dato VM, Anderson AD, Moodie CE, et al. (2009). Cluster of sylvatic epidemic typhus cases associated with flying squirrels, 2004-2006. Emerg Infect Dis 15: 1005–1011.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chaudhry MA, Scofield RH (2013). Atypical Rocky Mountain spotted fever with polyarticular arthritis. Am J Med Sci 346: 427–429.PubMedCrossRefGoogle Scholar
  30. Choi YJ, Lee EM, Park JM, Lee KM, Han SH, et al. (2007). Molecular detection of various rickettsiae in mites (acari: trombiculidae) in southern Jeolla Province, Korea. Microbiol Immunol 51: 307–312.PubMedCrossRefGoogle Scholar
  31. Civen R, Ngo V (2008). Murine typhus: an unrecognized suburban vectorborne disease. Clin Infect Dis 46: 913–918.PubMedCrossRefGoogle Scholar
  32. Clark TR, Noriea NF, Bublitz DC, Ellison DW, Martens C, et al. (2015). Comparative genome sequencing of Rickettsia rickettsii strains that differ in virulence. Infect Immun 83: 1568–1576.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Clayton KA, Gall CA, Mason KL, Scoles GA, Brayton KA (2015). The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick, Dermacentor andersoni. Parasit Vectors 8: 632.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Clements ML, Dumler JS, Fiset P, Wisseman CL, Snyder MJ, et al. (1983). Serodiagnosis of Rocky Mountain spotted fever: comparison of IgM and IgG enzyme-linked immunosorbent assays and indirect fluorescent antibody test. J Infect Dis 148: 876–880.PubMedCrossRefGoogle Scholar
  35. Cordell EF (1903). The Medical Annals of Maryland, 1799-1899. Baltimore.Google Scholar
  36. Curtin RG (1890). Epidemics in the Philadelphia Hospital from 1862 to 1890. Philadelphia Hospital Reports I: 309–318.Google Scholar
  37. Damas JK, Davi G, Jensenius M, Santilli F, Otterdal K, et al. (2009). Relative chemokine and adhesion molecule expression in Mediterranean spotted fever and African tick bite fever. J Infect 58: 68–75.PubMedCrossRefGoogle Scholar
  38. Dasch GA, Graddy H, Wikswo M, Pegg E, Green D, et al. (2006). Stability of insertion/deletion events for rapid and simple differentiation of Rickettsia prowazekii and Rickettsia typhi. The 20th Meeting of the American Society for Rickettsiology; Asilomar, CA.Google Scholar
  39. Dasch GA, Highbauh A, Nicholson WL. (2001). Direct binding and competition enzyme-linked immunosorbent assays for identifying the etiologic agents of spotted fever (abstract 8). In. Program and Abstracts of the American Society for Rickettsiology. Joint Conference, Big Sky, MT. Missoula, MT, USA: ASR.Google Scholar
  40. Dasch GA, Samms JR, Weiss E (1978). Biochemical characteristics of typhus group rickettsiae with special attention to the Rickettsia prowazekii strains isolated from flying squirrels. Infect Immun 19: 676–685.PubMedPubMedCentralGoogle Scholar
  41. Delisle J, Mendell NL, Stull-Lane A, Bloch KC, Bouyer DH, et al. (2016). Human infections by multiple spotted fever group rickettsiae in Tennessee. Am J Trop Med Hyg 94: 1212–1217.Google Scholar
  42. Demma L, Traeger M, Blau D, Gordon R, Johnson B, et al. (2006). Serologic evidence for exposure to Rickettsia rickettsii in eastern Arizona and recent emergence of Rocky Mountain spotted fever in this region. Vector Borne Zoonotic Dis 6: 423–429.PubMedCrossRefGoogle Scholar
  43. Demma LJ, Traeger MS, Nicholson WL, Paddock CD, Blau DM, et al. (2005). Rocky Mountain spotted fever from an unexpected tick vector in Arizona. N Engl J Med 353: 587–594.PubMedCrossRefGoogle Scholar
  44. Denison AM, Amin BD, Nicholson WL, Paddock CD (2014). Detection of Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari in skin biopsy specimens using a multiplex real-time polymerase chain reaction assay. Clin Infect Dis 59: 635–642.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Edouard S, Subramanian G, Lefevre B, Dos Santos A, Pouedras P, et al. (2013). Co-infection with Arsenophonus nasoniae and Orientia tsutsugamushi in a traveler. Vector Borne Zoonotic Dis 13: 565–571.PubMedCrossRefGoogle Scholar
  46. Elisberg BL, Bozeman F. (1979). The rickettsiae. In: Lennette E, Schmidt N, editors. Diagnostic procedures for viral, rickettsial and chlamydial infections. Washington DC: American Public Health Association p. 1061–1108.Google Scholar
  47. Ellison DW, Clark TR, Sturdevant DE, Virtaneva K, Porcella SF, et al. (2008). Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa. Infect Immun 76: 542–550.PubMedCrossRefGoogle Scholar
  48. Eremeeva M, Dasch G (2009). Closing the gaps between genotype and phenotype in Rickettsia rickettsii. Ann N Y Acad Sci 1166: 12–26.PubMedCrossRefGoogle Scholar
  49. Eremeeva M, Yu X, Raoult D (1994). Differentiation among spotted fever group rickettsiae species by analysis of restriction fragment length polymorphism of PCR-amplified DNA. J Clin Microbiol 32: 803–810.PubMedPubMedCentralGoogle Scholar
  50. Eremeeva ME (2012). Molecular epidemiology of rickettsial diseases in North America. Ticks Tick Borne Dis 3: 332–337.PubMedCrossRefGoogle Scholar
  51. Eremeeva ME, Bosserman E, Zambrano M, Demma L, Dasch GA (2006a). Molecular typing of novel Rickettsia rickettsii isolates from Arizona. Ann N Y Acad Sci 1078: 573–577.PubMedCrossRefGoogle Scholar
  52. Eremeeva ME, Bosserman EA, Demma LJ, Zambrano ML, Blau DM, et al. (2006b). Isolation and identification of Rickettsia massiliae from Rhipicephalus sanguineus ticks collected in Arizona. Appl Environ Microbiol 72: 5569–5577.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Eremeeva ME, Dasch GA, Silverman DJ (2003a). Evaluation of a PCR assay for quantitation of Rickettsia rickettsii and closely related spotted fever group rickettsiae. J Clin Microbiol 41: 5466–5472.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Eremeeva ME, Karpathy SE, Krueger L, Hayes EK, Williams AM, et al. (2012). Two pathogens and one disease: detection and identification of flea-borne rickettsiae in areas endemic for murine typhus in California. J Med Entomol 49: 1485–1494.PubMedCrossRefGoogle Scholar
  55. Eremeeva ME, Klemt RM, Santucci-Domotor LA, Silverman DJ, Dasch GA (2003b). Genetic analysis of isolates of Rickettsia rickettsii that differ in virulence. Ann N Y Acad Sci 990: 717–722.PubMedCrossRefGoogle Scholar
  56. Eremeeva ME, Zambrano ML, Anaya L, Beati L, Karpathy S, et al. (2011). Rickettsia rickettsii in Rhipicephalus ticks, Mexicali, Mexico. J Med Entomol 48: 1–4.CrossRefGoogle Scholar
  57. Estripeaut D, Aramburu MG, Saez-Llorens X, Thompson HA, Dasch GA, et al. (2007). Rocky Mountain spotted fever, Panama. Emerg Infect Dis 13: 1763–1765.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fleck L (1947). Specific antigenic substances in the urine of typhus patients. Tex Rep Biol Med 5: 168–172.PubMedGoogle Scholar
  59. Fleck L, Porat S, Evenchik Z, Klinberg MA (1960). The renal excretion of specific microbial substances during the course of infection with murine typhus rickettsiae. Am J Hyg 72: 351–361.PubMedGoogle Scholar
  60. Fornadel CM, Smith JD, Zawada SE, Arias JR, Norris DE (2013). Detection of Rickettsia massiliae in Rhipicephalus sanguineus from the eastern United States. Vector Borne Zoonotic Dis 13: 67–69.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Forte GI, Scola L, Misiano G, Milano S, Mansueto P, et al. (2009). Relevance of gamma interferon, tumor necrosis factor alpha, and interleukin-10 gene polymorphisms to susceptibility to Mediterranean spotted fever. Clin Vaccine Immunol 16: 811–815.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Fournier P-E, Dumler JS, Greub G, Zhang J, Wu Y, et al. (2003). Gene sequence-based criteria for identification of new rickettsia isolates and description of Rickettsia heilongjiangensis sp. nov. J Clin Microbiol 41: 5456–5465.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Fournier P-E, Roux V, Raoult D (1998). Phylogenetic analysis of spotted fever group rickettsiae by study of the outer surface protein rOmpA. Int J Syst Bacteriol 48: 839–849.PubMedCrossRefGoogle Scholar
  64. Fournier PE, Raoult D (2007). Identification of rickettsial isolates at the species level using multi-spacer typing. BMC Microbiol 7: 72.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Fournier PE, Zhu Y, Ogata H, Raoult D (2004). Use of highly variable intergenic spacer sequences for multispacer typing of Rickettsia conorii strains. J Clin Microbiol 42: 5757–5766.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Fournier PE, Zhu Y, Yu X, Raoult D (2006). Proposal to create subspecies of Rickettsia sibirica and an emended description of Rickettsia sibirica. Ann N Y Acad Sci 1078: 597–606.PubMedCrossRefGoogle Scholar
  67. Fritz CL, Kriner P, Garcia D, Padgett KA, Espinosa A, et al. (2012). Tick infestation and spotted-fever group Rickettsia in shelter dogs, California, 2009. Zoonoses Public Health 59: 4–7.PubMedCrossRefGoogle Scholar
  68. Alvarez Hernández G.,Contreras Soto JJ (2013). Mortality from Rickettsia rickettsii spotted fever in patients at a pediatric hospital in the state of Sonora, 2004-2012. Salud Publica Mex 55: 151–152.Google Scholar
  69. Garcia-Garcia JC, Portillo A, Nunez MJ, Santibanez S, Castro B, et al. (2010). A patient from Argentina infected with Rickettsia massiliae. Am J Trop Med Hyg 82: 691–692.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ge H, Tong M, Jiang J, Dasch GA, Richards AL (2007). Genotypic comparison of five isolates of Rickettsia prowazekii by multilocus sequence typing. FEMS Microbiol Lett 271: 112–117.PubMedCrossRefGoogle Scholar
  71. Gillespie JJ, Joardar V, Williams KP, Driscoll T, Hostetler JB, et al. (2012). A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J Bacteriol 194: 376–394.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Gilmore RD, Jr., Hackstadt T (1991). DNA polymorphism in the conserved 190 kDa antigen gene repeat region among spotted fever group rickettsiae. Biochim Biophys Acta 1097: 77–80.PubMedCrossRefGoogle Scholar
  73. Giulieri S, Jaton K, Cometta A, Trellu LT, Greub G (2012). Development of a duplex real-time PCR for the detection of Rickettsia spp. and typhus group rickettsia in clinical samples. FEMS Immunol Med Microbiol 64: 92–97.PubMedCrossRefGoogle Scholar
  74. Goddard J (2009). Historical and recent evidence for close relationships among Rickettsia parkeri, R. conorii, R. africae, and R. sibirica: implications for rickettsial taxonomy. J Vector Ecol 34: 238–242.PubMedCrossRefGoogle Scholar
  75. Goncalves da Costa PS, Brigatte ME, Pereira de Almeida E, de Carvalho Valle LM (2002). Atypical fulminant Rickettsia rickettsii infection (Brazilian spotted fever) presenting as septic shock and adult respiratory distress syndrome. Braz J Infect Dis 6: 91–96.PubMedGoogle Scholar
  76. Hajduskova E, Literak I, Papousek I, Costa FB, Novakova M, et al. (2016). ‘Candidatus Rickettsia mendelii’, a novel basal group rickettsia detected in Ixodes ricinus ticks in the Czech Republic. Ticks Tick Borne Dis 7: 482–486.PubMedCrossRefGoogle Scholar
  77. Harden VA. (1990). Rocky Mountain Spotted Fever: History of a Twentieth-Century Disease. Baltimore and London: The John Hopkins University Press.Google Scholar
  78. Henry KM, Jiang J, Rozmajzl PJ, Azad AF, Macaluso KR, et al. (2007). Development of quantitative real-time PCR assays to detect Rickettsia typhi and Rickettsia felis, the causative agents of murine typhus and flea-borne spotted fever. Mol Cell Probes 21: 17–23.PubMedCrossRefGoogle Scholar
  79. Herrick KL, Pena SA, Yaglom HD, Layton BJ, Moors A, et al. (2016). Rickettsia parkeri rickettsiosis, Arizona, USA. Emerg Infect Dis 22: 780–785.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Jiang J, Maina AN, Knobel DL, Cleaveland S, Laudisoit A, et al. (2013). Molecular detection of Rickettsia felis and Candidatus Rickettsia asemboensis in fleas from human habitats, Asembo, Kenya. Vector Borne Zoonotic Dis 13: 550–558.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Jiang J, Yarina T, Miller MK, Stromdahl EY, Richards AL (2010). Molecular detection of Rickettsia amblyommii in Amblyomma americanum parasitizing humans. Vector Borne Zoonotic Dis 10: 329–340.PubMedCrossRefGoogle Scholar
  82. Jiang J, You BJ, Liu E, Apte A, Yarina TR, et al. (2012). Development of three quantitative real-time PCR assays for the detection of Rickettsia raoultii, Rickettsia slovaca, and Rickettsia aeschlimannii and their validation with ticks from the country of Georgia and the Republic of Azerbaijan. Ticks Tick Borne Dis 3: 327–331.PubMedCrossRefGoogle Scholar
  83. Johnston SH, Glaser CA, Padgett K, Wadford DA, Espinosa A, et al. (2013). Rickettsia spp. 364D causing a cluster of eschar-associated illness, California. Pediatr Infect Dis J 32: 1036–1039.PubMedCrossRefGoogle Scholar
  84. Karpathy SE, Dasch GA, Eremeeva ME (2007). Molecular typing of isolates of Rickettsia rickettsii by use of DNA sequencing of variable intergenic regions. J Clin Microbiol 45: 2545–2553.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kato CY, Chung IH, Robinson LK, Austin AL, Dasch GA, et al. (2013). Assessment of real-time PCR assay for detection of Rickettsia spp. and Rickettsia rickettsii in banked clinical samples. J Clin Microbiol 51: 314–317.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kato CY, Chung IH, Robinson LK, Eremeeva ME, Bruce DC, et al. (2010). Mismatch amplification mutation assays for genotyping Rickettsia typhi. The American Society for Microbiology (ASM), 8th ASM Biodefense Research Meeting; February 21–24, (2010); Baltimore, MDGoogle Scholar
  87. Kato CY, Robinson LK, White FH, Slater K, Karpathy SE, et al. (2009). The 23rd Meeting of the American Society for Rickettsiology. Hilton Head, South Carolina.Google Scholar
  88. Khrouf F, Sellami H, Elleuch E, Hattab Z, Ammari L, et al. (2016). Molecular diagnosis of Rickettsia infection in patients from Tunisia. Ticks Tick Borne Dis 7: 653–656.Google Scholar
  89. Kondo M, Akachi S, Kawano M, Yamanaka K, Yamagiwa A, et al. (2015). Improvement in early diagnosis of Japanese spotted fever by using a novel Rick PCR system. J Dermatol 42: 1066–1071.PubMedCrossRefGoogle Scholar
  90. Kulagin S (1952). Characteristics of endemic rickettsioses. Zh. Microbiol Epidemiol Immunobiol 12: 3–10.Google Scholar
  91. La Scola B, Raoult D. (1999). Serologic diagnosis of rickettsiosis. In: Raoult D, Brouqui P, editors. Rickettsiae and rickettsial diseases at the turn of the third millennium. Paris: Elsevier. p. 320–329.Google Scholar
  92. La Scola B, Rydkina L, Ndihokubwayo JB, Vene S, Raoult D (2000). Serological differentiation of murine typhus and epidemic typhus using cross-adsorption and Western blotting. Clin Diagn Lab Immunol 7: 612–616.PubMedPubMedCentralGoogle Scholar
  93. Labruna MB (2009). Ecology of rickettsia in South America. Ann N Y Acad Sci 1166: 156–166.PubMedCrossRefGoogle Scholar
  94. Lado P, Costa FB, Verdes JM, Labruna MB, Venzal JM (2015). Seroepidemiological survey of Rickettsia spp. in dogs from the endemic area of Rickettsia parkeri rickettsiosis in Uruguay. Acta Trop 146: 7–10.PubMedCrossRefGoogle Scholar
  95. Lane RS, Emmons RW, Dondero DV, Nelson BC (1981). Ecology of tick-borne agents in California: I. Spotted fever group rickettsiae. Am J Trop Med Hyg 30: 239–252.PubMedGoogle Scholar
  96. Lane RS, Philip RN, Casper EA. (1981). Ecology of tick-borne agents in California: II. Further observations on rickettsiae. In: Burgdorfer W, Anacker RL, editors. Rickettsiae and Rickettsial Diseases. New York, New York: Academic Press. p. 575–584.Google Scholar
  97. Lee S, Kakumanu ML, Ponnusamy L, Vaughn M, Funkhouser S, et al. (2014). Prevalence of Rickettsiales in ticks removed from the skin of outdoor workers in North Carolina. Parasit Vectors 7: 607.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lloyd SJ, LaPatra SE, Snekvik KR, Cain KD, Call DR (2011). Quantitative PCR demonstrates a positive correlation between a Rickettsia-like organism and severity of strawberry disease lesions in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 34: 701–709.PubMedCrossRefGoogle Scholar
  99. Londono AF, Diaz FJ, Valbuena G, Gazi M, Labruna MB, et al. (2014). Infection of Amblyomma ovale by Rickettsia sp. strain Atlantic rainforest, Colombia. Ticks Tick Borne Dis 5: 672–675.PubMedCrossRefGoogle Scholar
  100. Love GJ, Smith WW (1960). Murine typhus investigations in southwestern Georgia. Public Health Rep 75: 429–440.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mansueto P, Vitale G, Cascio A, Seidita A, Pepe I, et al. (2012). New insight into immunity and immunopathology of rickettsial diseases. Clin Dev Immunol 2012:967852.PubMedCrossRefGoogle Scholar
  102. Matsumoto M, Tange Y, Okada T, Inoue Y, Horiuchi T, et al. (1996). Deletion in the 190 kDa antigen gene repeat region of Rickettsia rickettsii. Microb Pathog 20: 57–62.PubMedCrossRefGoogle Scholar
  103. McQuiston JH, Zemtsova G, Perniciaro J, Hutson M, Singleton J, et al. (2012). Afebrile spotted fever group Rickettsia infection after a bite from a Dermacentor variabilis tick infected with Rickettsia montanensis. Vector Borne Zoonotic Dis 12: 1059–1061.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Mediannikov O, Aubadie-Ladrix M, Raoult D (2015). Candidatus ‘Rickettsia senegalensis’ in cat fleas in Senegal. New Microbes New Infect 3: 24–28.PubMedCrossRefGoogle Scholar
  105. Mediannikov O, Socolovschi C, Edouard S, Fenollar F, Mouffok N, et al. (2013). Common epidemiology of Rickettsia felis infection and malaria, Africa. Emerg Infect Dis 19: 1775–1783.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Melo AL, Alves AS, Nieri-Bastos FA, Martins TF, Witter R, et al. (2015). Rickettsia parkeri infecting free-living Amblyomma triste ticks in the Brazilian Pantanal. Ticks Tick Borne Dis 6: 237–241.PubMedCrossRefGoogle Scholar
  107. Mixson TR, Campbell SR, Gill JS, Ginsberg HS, Reichard MV, et al. (2006). Prevalence of Ehrlichia, Borrelia, and Rickettsial agents in Amblyomma americanum (Acari: Ixodidae) collected from nine states. J Med Entomol 43: 1261–1268.PubMedGoogle Scholar
  108. Moncayo AC, Cohen SB, Fritzen CM, Huang E, Yabsley MJ, et al. (2010). Absence of Rickettsia rickettsii and occurrence of other spotted fever group rickettsiae in ticks from Tennessee. Am J Trop Med Hyg 83: 653–657.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Monje LD, Nava S, Eberhardt AT, Correa AI, Guglielmone AA, et al. (2015). Molecular detection of the human pathogenic Rickettsia sp. strain Atlantic rainforest in Amblyomma dubitatum ticks from Argentina. Vector Borne Zoonotic Dis 15: 167–169.PubMedCrossRefGoogle Scholar
  110. Moron CG, Bouyer DH, Yu XJ, Foil LD, Crocquet-Valdes P, et al. (2000). Phylogenetic analysis of the rompB genes of Rickettsia felis and Rickettsia prowazekii European-human and North American flying-squirrel strains. Am J Trop Med Hyg 62: 598–603.PubMedGoogle Scholar
  111. Mouffok N, Socolovschi C, Benabdellah A, Renvoise A, Parola P, et al. (2011). Diagnosis of rickettsioses from eschar swab samples, Algeria. Emerg Infect Dis 17: 1968–1969.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Myers T, Lalani T, Dent M, Jiang J, Daly PL, et al. (2013). Detecting Rickettsia parkeri infection from eschar swab specimens. Emerg Infect Dis 19: 778–780.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Newhouse VF, Shepard CC, Redus MD, Tzianabos T, McDade JE (1979). A comparison of the complement fixation, indirect fluorescent antibody, and microagglutination tests for the serological diagnosis of rickettsial diseases. Am J Trop Med Hyg 28: 387–395.PubMedGoogle Scholar
  114. Nicholson WL, Masters E, Wormser GP (2009). Preliminary serologic investigation of ‘Rickettsia amblyommii’ in the aetiology of Southern tick associated rash illness (STARI). Clin Microbiol Infect 15 Suppl 2: 235–236.PubMedCrossRefGoogle Scholar
  115. Ogrzewalska M, Nieri-Bastos FA, Marcili A, Nava S, Gonzalez-Acuna D, et al. (2016). A novel spotted fever group Rickettsia infecting Amblyomma parvitarsum (Acari: Ixodidae) in highlands of Argentina and Chile. Ticks Tick Borne Dis 7: 439–442.PubMedCrossRefGoogle Scholar
  116. Openshaw JJ, Swerdlow DL, Krebs JW, Holman RC, Mandel E, et al. (2010). Rocky mountain spotted fever in the United States, 2000-(2007): interpreting contemporary increases in incidence. Am J Trop Med Hyg 83: 174–182.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Paddock CD, Denison AM, Dryden MW, Noden BH, Lash RR, et al. (2015). High prevalence of “Candidatus Rickettsia andeanae” and apparent exclusion of Rickettsia parkeri in adult Amblyomma maculatum (Acari: Ixodidae) from Kansas and Oklahoma. Ticks Tick Borne Dis 6: 297–302.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Paddock CD, Denison AM, Lash RR, Liu L, Bollweg BC, et al. (2014). Phylogeography of Rickettsia rickettsii genotypes associated with fatal Rocky Mountain spotted fever. Am J Trop Med Hyg 91: 589–597.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Paddock CD, Eremeeva ME. (2007). Rickettsialpox. In: Raoult D, Parola P, editors. Rickettsia and Rickettsial Diseases: Informa Healthcare USA, Inc. p. 63–86.Google Scholar
  120. Paddock CD, Finley RW, Wright CS, Robinson HN, Schrodt BJ, et al. (2008). Rickettsia parkeri rickettsiosis and its clinical distinction from Rocky Mountain spotted fever. Clin Infect Dis 47: 1188–1196.PubMedCrossRefGoogle Scholar
  121. Paddock CD, Sumner JW, Comer JA, Zaki SR, Goldsmith CS, et al. (2004). Rickettsia parkeri: a newly recognized cause of spotted fever rickettsiosis in the United States. Clin Infect Dis 38: 805–811.PubMedCrossRefGoogle Scholar
  122. Paddock CD, Zaki SR, Koss T, Singleton J, Jr., Sumner JW, et al. (2003). Rickettsialpox in New York City: a persistent urban zoonosis. Ann N Y Acad Sci 990: 36–44.PubMedCrossRefGoogle Scholar
  123. Padgett KA, Bonilla D, Eremeeva ME, Glaser C, Lane RS, et al. (2016). The Eco–epidemiology of Pacific Coast Tick Fever in California. PLoS Negl Trop Dis 10: e0005020.Google Scholar
  124. Parker RR, Pickens EG, Lackman DB, Bell EJ, Thraikill FB (1951). Isolation and characterization of Rocky Mountain spotted fever rickettsiae from the rabbit tick Haemaphysalis leporis-palustris Packard. Publ Hlth Rep 66: 455–463.CrossRefGoogle Scholar
  125. Parola P, Labruna MB, Raoult D (2009). Tick-borne rickettsioses in America: unanswered questions and emerging diseases. Curr Infect Dis Rep 11: 40–50.PubMedCrossRefGoogle Scholar
  126. Parola P, Paddock CD, Raoult D (2005). Tick–borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev 18: 719–756.Google Scholar
  127. Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, et al. (2013). Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev 26: 657–702.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Parola P, Socolovschi C, Jeanjean L, Bitam I, Fournier PE, et al. (2008). Warmer weather linked to tick attack and emergence of severe rickettsioses. PLoS Negl Trop Dis 2: e338.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Philip RN, Casper EA, Burgdorfer W, Gerloff RK, Hughes LE, et al. (1978). Serologic typing of rickettsiae of the spotted fever group by immunofluorescense. J Immun 121: 1961–1968.PubMedGoogle Scholar
  130. Philip RN, Casper EA, MacCormack JN, Sexton D, Thomas LA, et al. (1977). A comparison of serologic methods for diagnosis of Rocky Mountain spotted fever. Am J Epidem 105: 56–67.Google Scholar
  131. Philip RN, Casper EA, Ormsbee RA, Peacock MG, Burgdorfer W (1976). Microimmunofluorescence test for the serological study of rocky mountain spotted fever and typhus. J Clin Microbiol 3: 51–61.PubMedPubMedCentralGoogle Scholar
  132. Pinter A, Horta MC, Pacheco RC, Moraes-Filho J, Labruna MB (2008). Serosurvey of Rickettsia spp. in dogs and humans from an endemic area for Brazilian spotted fever in the State of Sao Paulo, Brazil. Cad Saude Publica 24: 247–252.PubMedCrossRefGoogle Scholar
  133. Popivanova NI, Murdjeva MA, Baltadzhiev IG, Haydushka IA (2011). Dynamics in serum cytokine responses during acute and convalescent stages of Mediterranean spotted fever. Folia Med (Plovdiv) 53: 36–43.Google Scholar
  134. Portillo A, Garcia-Garcia C, Sanz MM, Santibanez S, Venzal JM, et al. (2013). A confirmed case of Rickettsia parkeri infection in a traveler from Uruguay. Am J Trop Med Hyg 89: 1203–1205.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Premaratna R, Halambarachchige LP, Nanayakkara DM, Chandrasena TG, Rajapakse RP, et al. (2011). Evidence of acute rickettsioses among patients presumed to have chikungunya fever during the chikungunya outbreak in Sri Lanka. Int J Infect Dis 15: e871–873.PubMedCrossRefGoogle Scholar
  136. Procop GW, Burchette JL, Jr., Howell DN, Sexton DJ (1997). Immunoperoxidase and immunofluorescent staining of Rickettsia rickettsii in skin biopsies. A comparative study. Arch Pathol Lab Med 121: 894–899.PubMedGoogle Scholar
  137. Raoult D, Dasch GA (1995). Immunoblot cross-reactions among Rickettsia, Proteus spp. and Legionella spp. in patients with Mediterranean spotted fever. FEMS Immunol Med Microbiol 11: 13–18.PubMedCrossRefGoogle Scholar
  138. Raoult D, Paddock CD (2005). Rickettsia parkeri infection and other spotted fevers in the United States. N Engl J Med 353: 626–627.PubMedCrossRefGoogle Scholar
  139. Raoult D, Parola P (2008). Rocky Mountain spotted fever in the USA: a benign disease or a common diagnostic error? Lancet Infect Dis 8: 587–589.PubMedCrossRefGoogle Scholar
  140. Regnery RL, Spruill CL, Plikaytis BD (1991). Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol 173: 1576–1589.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Reif KE, Macaluso KR (2009). Ecology of Rickettsia felis: a review. J Med Entomol 46: 723–736.PubMedCrossRefGoogle Scholar
  142. Renvoise A, van’t Wout JW, van der Schroeff JG, Beersma MF, Raoult D (2012). A case of rickettsialpox in Northern Europe. Int J Infect Dis 16: e221–222.PubMedCrossRefGoogle Scholar
  143. Rolain JM, Maurin M, Vestris G, Raoult D (1998). In vitro susceptibilities of 27 rickettsiae to 13 antimicrobials. Antimicrob Agents Chemother 42: 1537–1541.PubMedPubMedCentralGoogle Scholar
  144. Romer Y, Nava S, Govedic F, Cicuttin G, Denison AM, et al. (2014). Rickettsia parkeri rickettsiosis in different ecological regions of Argentina and its association with Amblyomma tigrinum as a potential vector. Am J Trop Med Hyg 91: 1156–1160.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Romer Y, Seijo AC, Crudo F, Nicholson WL, Varela-Stokes A, et al. (2011). Rickettsia parkeri Rickettsiosis, Argentina. Emerg Infect Dis 17: 1169–1173.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Rosen G (1972). Tenements and typhus in New York City, 1840-1875. Am J Public Health 62: 590–593.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Roux V, Fournier PE, Raoult D (1996). Differentiation of spotted fever group rickettsiae by sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the gene encoding the protein rOmpA. J Clin Microbiol 34: 2058–2065.PubMedPubMedCentralGoogle Scholar
  148. Roux V, Raoult D (1995). Phylogenetic analysis of the genus Rickettsia by 16S rDNA sequencing. Res Microbiol 146: 385–396.PubMedCrossRefGoogle Scholar
  149. Roux V, Rydkina E, Eremeeva M, Raoult D (1997). Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the rickettsiae. Int J Syst Bacteriol 47: 252–261.PubMedCrossRefGoogle Scholar
  150. Rozental T, Eremeeva ME, Paddock CD, Zaki SR, Dasch GA, et al. (2006). Fatal case of Brazilian spotted fever confirmed by immunohistochemical staining and sequencing methods on fixed tissues. Ann N Y Acad Sci 1078: 257–259.PubMedCrossRefGoogle Scholar
  151. Sahni SK, Narra HP, Sahni A, Walker DH (2013). Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol 8: 1265–1288.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Sahni SK, Rydkina E (2009). Host-cell interactions with pathogenic Rickettsia species. Future Microbiol 4: 323–339.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Schriefer ME, Sacci JB, Jr., Dumler JS, Bullen MG, Azad AF (1994). Identification of a novel rickettsial infection in a patient diagnosed with murine typhus. J Clin Microbiol 32: 949–954.PubMedPubMedCentralGoogle Scholar
  154. Shankman B (1946). Report on an outbreak of endemic febrile illness, not yet identified, occurring in New York City. N Y State J Med 46: 2156–2159.PubMedGoogle Scholar
  155. Shapiro MR, Fritz CL, Tait K, Paddock CP, Nicholson WL, et al. (2010). Rickettsia 364D: a newly recognized cause of eschar-associated illness in California. Clin Infect Dis 50: 541–548.PubMedCrossRefGoogle Scholar
  156. Silva N, Eremeeva ME, Rozental T, Ribeiro GS, Paddock CD, et al. (2011). Eschar-associated spotted fever rickettsiosis, Bahia, Brazil. Emerg Infect Dis 17: 275–278.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Spolidorio MG, Labruna MB, Mantovani E, Brandao PE, Richtzenhain LJ, et al. (2010). Novel spotted fever group rickettsiosis, Brazil. Emerg Infect Dis 16: 521–523.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Stothard DR, Fuerst PA (1995). Evolutionary analysis of the spotted fever and typhus groups of Rickettsia using 16S rRNA gene sequences. Syst Appl Microbiol 18: 52–61.CrossRefGoogle Scholar
  159. Stromdahl EY, Jiang J, Vince M, Richards AL (2011). Infrequency of Rickettsia rickettsii in Dermacentor variabilis removed from humans, with comments on the role of other human-biting ticks associated with spotted fever group rickettsiae in the United States. Vector Borne Zoonotic Dis 11: 969–977.PubMedCrossRefGoogle Scholar
  160. Sumner JW, Durden LA, Goddard J, Stromdahl EY, Clark KL, et al. (2007). Gulf Coast ticks (Amblyomma maculatum) and Rickettsia parkeri, United States. Emerg Infect Dis 13: 751–753.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Szabo MP, Nieri-Bastos FA, Spolidorio MG, Martins TF, Barbieri AM, et al. (2013a). In vitro isolation from Amblyomma ovale (Acari: Ixodidae) and ecological aspects of the Atlantic rainforest Rickettsia, the causative agent of a novel spotted fever rickettsiosis in Brazil. Parasitology 140: 719–728.PubMedCrossRefGoogle Scholar
  162. Szabo MP, Pinter A, Labruna MB (2013b). Ecology, biology and distribution of spotted-fever tick vectors in Brazil. Front Cell Infect Microbiol 3: 27.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Tai K, Iwasaki H, Ikegaya S, Takada N, Tamaki Y, et al. (2014). Significantly higher cytokine and chemokine levels in patients with Japanese spotted fever than in those with Tsutsugamushi disease. J Clin Microbiol 52: 1938–1946.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Tamekuni K, Toledo Rdos S, Silva Filho Mde F, Haydu VB, Pacheco RC, et al. (2010). Serosurvey of antibodies against spotted fever group Rickettsia spp. in horse farms in Northern Parana, Brazil. Rev Bras Parasitol Vet 19: 259–261.PubMedCrossRefGoogle Scholar
  165. Tang M, Martinez AP, Eremeeva ME, Dasch GA. (2010). Genotyping isolates of Rickettsia akari by restriction fragment length polymorphism analysis of intergenic regions. (2010) ICEID Meeting; Atlanta, GA.Google Scholar
  166. Tinoco-Gracia L, Quiroz-Romero H, Quintero-Martinez MT, Renteria-Evangelista TB, Gonzalez-Medina Y, et al. (2009). Prevalence of Rhipicephalus sanguineus ticks on dogs in a region on the Mexico-USA border. Vet Rec 164: 59–61.PubMedCrossRefGoogle Scholar
  167. Traub R, Wisseman CL, Farhang-Azad A (1978). The ecology of murine typhus-a critical review. Trop Dis Bull 75: 237–317.PubMedGoogle Scholar
  168. Venzal JM, Estrada-Pena A, Portillo A, Mangold AJ, Castro O, et al. (2012). Rickettsia parkeri: a Rickettsial pathogen transmitted by ticks in endemic areas for spotted fever rickettsiosis in southern Uruguay. Rev Inst Med Trop Sao Paulo 54: 131–134.PubMedCrossRefGoogle Scholar
  169. Vigil A, Chen C, Jain A, Nakajima-Sasaki R, Jasinskas A, et al. (2011). Profiling the humoral immune response of acute and chronic Q fever by protein microarray. Mol Cell Proteomics 10: M110 006304.Google Scholar
  170. Walker DH, Peacock MG. (1988). Laboratory diagnosis of rickettsial diseases. In: Walker DH, editor. Biology of Rickettsial Diseases. Boca Raton, FL: CRC Press. p. 135–155.Google Scholar
  171. Walter G, Botelho-Nevers E, Socolovschi C, Raoult D, Parola P (2012). Murine typhus in returned travelers: a report of thirty-two cases. Am J Trop Med Hyg 86: 1049–1053.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Wikswo ME, Hu R, Metzger ME, Eremeeva ME (2007). Detection of Rickettsia rickettsii and Bartonella henselae in Rhipicephalus sanguineus ticks from California. J Med Entomol 44: 158–162.PubMedCrossRefGoogle Scholar
  173. Wilson MR, Shanbhag NM, Reid MJ, Singhal NS, Gelfand JM, et al. (2015). Diagnosing Balamuthia mandrillaris encephalitis with metagenomic deep sequencing. Ann Neurol 78: 722–730.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Woodman DR, Weiss E, Dasch GA, Bozeman FM (1977). Biological properties of Rickettsia prowazekii strains isolated from flying squirrels. Infect Immun 16: 853–860.PubMedPubMedCentralGoogle Scholar
  175. Woodward TE 1982. Murine and epidemic typhus rickettsiae: how close is their relationship? Yale J Biol Med 55: 335–341.PubMedPubMedCentralGoogle Scholar
  176. Zaharia M, Popescu CP, Florescu SA, Ceausu E, Raoult D, et al. (2016). Rickettsia massiliae infection and SENLAT syndrome in Romania. Ticks Tick Borne Dis. 2016 Mar 18. pii: S1877-959X(16)30044-9. doi: 10.1016/j.ttbdis.2016.03.008. [Epub ahead of print].
  177. Zavala-Castro JE, Zavala-Velazquez JE, Peniche-Lara GF, Sulu Uicab JE (2009). Human rickettsialpox, southeastern Mexico. Emerg Infect Dis 15: 1665–1667.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Zavala-Velazquez JE, Yu XJ, Walker DH (1996). Unrecognized spotted fever group rickettsiosis masquerading as dengue fever in Mexico. Am J Trop Med Hyg 55: 157–159.PubMedGoogle Scholar
  179. Zdrodovskii PF, Golinevitch HM. (1960). The Rickettsial Diseases. London: Pergamon Press Ltd.Google Scholar
  180. Zhu Y, Fournier PE, Ogata H, Raoult D (2005). Multispacer typing of Rickettsia prowazekii enabling epidemiological studies of epidemic typhus. J Clin Microbiol 43: 4708–4712.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Zhu Y, Medina-Sanchez A, Bouyer D, Walker DH, Yu XJ (2008). Genotyping Rickettsia prowazekii isolates. Emerg Infect Dis 14: 1300–1302.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Zinsser H (1934). Varieties of typhus virus and the epidemiology of the American form of European typhus fever (Brill’s disease). Am J Hyg 20: 513–532.Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Jiann-Ping Hsu College of Public Health, Georgia Southern UniversityStatesboroUSA

Personalised recommendations