Geostatistics Valencia 2016 pp 59-75

Part of the Quantitative Geology and Geostatistics book series (QGAG, volume 19) | Cite as

Modelling Asymmetrical Facies Successions Using Pluri-Gaussian Simulations

  • Thomas Le Blévec
  • Olivier Dubrule
  • Cédric M. John
  • Gary J. Hampson
Chapter

Abstract

An approach to model spatial asymmetrical relations between indicators is presented in a pluri-Gaussian framework. The underlying gaussian random functions are modelled using the linear model of co-regionalization, and a spatial shift is applied to them. Analytical relationships between the two underlying gaussian variograms and the indicator covariances are developed for a truncation rule with three facies and cut-off at 0. The application of this truncation rule demonstrates that the spatial shift on the underlying gaussian functions produces asymmetries in the modelled 1D facies sequences. For a general truncation rule, the indicator covariances can be computed numerically, and a sensitivity study shows that the spatial shift and the correlation coefficient between the gaussian functions provide flexibility to model the asymmetry between facies. Finally, a case study is presented of a Triassic vertical facies succession in the Latemar carbonate platform (Dolomites, Northern Italy) composed of shallowing-upward cycles. The model is flexible enough to capture the different transition probabilities between the environments of deposition and to generate realistic facies successions.

Bibliography

  1. Alabert F (1989) Non‐Gaussian data expansion in the earth sciences. Terra Nova 1(2):123–134CrossRefGoogle Scholar
  2. Allard D, D’Or D, Froidevaux R (2011) An efficient maximum entropy approach for categorical variable prediction. Eur J Soil Sci 62(3):381–393CrossRefGoogle Scholar
  3. Apanasovich TV, Genton MG (2010) Cross-covariance functions for multivariate random fields based on latent dimensions. Biometrika 97(1):15–30CrossRefGoogle Scholar
  4. Armstrong M, Galli A, Beucher H, Loc’h G, Renard D, Doligez B, … Geffroy F (2011) Plurigaussian simulations in geosciences. Springer Science & Business Media, New YorkGoogle Scholar
  5. Burgess P, Wright V, Emery D (2001) Numerical forward modelling of peritidal carbonate parasequence development: implications for outcrop interpretation. Basin Res 13(1):1–16CrossRefGoogle Scholar
  6. Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol 28(4):453–476CrossRefGoogle Scholar
  7. Catuneanu O, Galloway WE, Kendall CGSC, Miall AD, Posamentier HW, Strasser A, Tucker ME (2011) Sequence stratigraphy: methodology and nomenclature. Newslett Stratigr 44(3):173–245CrossRefGoogle Scholar
  8. Chilès J-P, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, vol 713. Wiley, HobokenGoogle Scholar
  9. D’Or D, Allard D, Biver P, Froidevaux R, Walgenwitz A (2008) Simulating categorical random fields using the multinomial regression approach. Paper presented at the Geostats 2008—proceedings of the eighth international geostatistics congressGoogle Scholar
  10. Dubrule O (2016) Indicator variogram models – do we have much choice?. Manuscript submitted for publicationGoogle Scholar
  11. Egenhoff SO, Peterhänsel A, Bechstädt T, Zühlke R, Grötsch J (1999) Facies architecture of an isolated carbonate platform: tracing the cycles of the Latemar (Middle Triassic, northern Italy). Sedimentology 46(5):893–912CrossRefGoogle Scholar
  12. Fischer AG (1964) The Lofer cyclothems of the alpine Triassic. Princeton University, PrincetonGoogle Scholar
  13. Genz A (1992) Numerical computation of multivariate normal probabilities. J Comput Graph Stat 1(2):141–149Google Scholar
  14. Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2009) mvtnorm: multivariate normal and t distributions. R package version 0.9-8. URL http://CRAN.R-project.org/package=mvtnorm
  15. Gneiting T, Kleiber W, Schlather M (2012) Matérn cross-covariance functions for multivariate random fields. J Am Stat Assoc 105(491):1167–1177Google Scholar
  16. Goldhammer R, Dunn P, Hardie L (1990) Depositional cycles, composite sea-level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing: examples from Alpine Triassic platform carbonates. Geol Soc Am Bull 102(5):535–562CrossRefGoogle Scholar
  17. Grotzinger JP (1986) Cyclicity and paleoenvironmental dynamics, Rocknest platform, northwest Canada. Geol Soc Am Bull 97(10):1208–1231CrossRefGoogle Scholar
  18. Kendall M, Stuart A, Ord J (1994) Vol. 1: Distribution theory. Arnold, LondonGoogle Scholar
  19. Lantuéjoul C (2002) Geostatistical simulation: models and algorithms. Springer Science & Business Media, BerlinGoogle Scholar
  20. Li B, Zhang H (2011) An approach to modeling asymmetric multivariate spatial covariance structures. J Multivar Anal 102(10):1445–1453CrossRefGoogle Scholar
  21. Masetti D, Neri C, Bosellini A (1991) Deep-water asymmetric cycles and progradation of carbonate platforms governed by high-frequency eustatic oscillations (Triassic of the Dolomites, Italy). Geology 19(4):336–339CrossRefGoogle Scholar
  22. Oliver DS (2003) Gaussian cosimulation: modelling of the cross-covariance. Math Geol 35(6):681–698CrossRefGoogle Scholar
  23. Renard D, Bez N, Desassis N, Beucher H, Ors F, Laporte F (2015) RGeostats: the geostatistical package (Version 11.0.1). Retrieved from http://cg.ensmp.fr/rgeostats
  24. Sena CM, John CM (2013) Impact of dynamic sedimentation on facies heterogeneities in Lower Cretaceous peritidal deposits of central east Oman. Sedimentology 60(5):1156–1183CrossRefGoogle Scholar
  25. Sheppard W (1899) On the application of the theory of error to cases of normal distribution and normal correlation. Philos Trans R Soc London Ser A Containing Pap Math Phys Charact 192:101–531CrossRefGoogle Scholar
  26. Strasser A (1988) Shallowing‐upward sequences in Purbeckian peritidal carbonates (lowermost Cretaceous, Swiss and French Jura Mountains). Sedimentology 35(3):369–383CrossRefGoogle Scholar
  27. Tucker M (1985) Shallow-marine carbonate facies and facies models. Geol Soc London Spec Publ 18(1):147–169CrossRefGoogle Scholar
  28. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  29. Wackernagel H (2013) Multivariate geostatistics: an introduction with applications. Springer Science & Business Media, BerlinGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thomas Le Blévec
    • 1
  • Olivier Dubrule
    • 1
  • Cédric M. John
    • 1
  • Gary J. Hampson
    • 1
  1. 1.Imperial College, Royal School of MinesLondonUK

Personalised recommendations