Advertisement

Unmanned Aerial Vehicle-Based Wireless Charging of Sensor Networks

  • Carrick DetweilerEmail author
  • Michael Eiskamp
  • Brent Griffin
  • Jennifer Johnson
  • Jinfu Leng
  • Andrew Mittleider
  • Elizabeth Basha
Chapter

Abstract

Sensor networks deployed in remote and hard to access locations often require regular maintenance to replace or charge batteries as solar panels are sometimes impractical. In this chapter, we develop an Unmanned Aerial Vehicle (UAV) that can fly to remote locations to charge sensors using magnetic resonant wireless power transfer. We discuss the challenges of using UAVs to charge sensors wirelessly. We then present the design of a lightweight system that can be carried by a UAV as well as design a localization sensor and algorithm to allow the UAV to precisely align itself with the receiver by sensing the induced field. We also develop a number of algorithms to address the question of which sensors should be charged given a network of sensors. Finally, we experimentally verify algorithms that leverage the sensor network’s ability to adapt internal communication and energy consumption patterns to optimize UAV-based wireless charging.

Keywords

Sensor Network Sensor Node Wireless Sensor Network Optical Flow Unmanned Aerial Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was partially supported by NSF 1217400, NSF 1217428, and USDA-NIFA 2013-67021-20947.

References

  1. 1.
    Achtelik, M.C., Stumpf, J., Gurdan, D., Doth, K.M.: Design of a flexible high performance quadcopter platform breaking the mav endurance record with laser power beaming. In: International Conference on Intelligent Robots and Systems (IROS), pp. 5166–5172 (2011)Google Scholar
  2. 2.
    Altug, E., Ostrowski, J., Taylor, C.: Quadrotor control using dual camera visual feedback. Int. Conf. Robot. Autom. (ICRA) 3, 4294–4299 (2003)Google Scholar
  3. 3.
    Bachrach, A., He, R., Roy, N.: Autonomous flight in unknown indoor environments. Int. J. Micro Air Veh. 1(4), 217–228 (2009)CrossRefGoogle Scholar
  4. 4.
    Basha, E., Eiskamp, M., Johnson, J., Detweiler, C.: Uav recharging opportunities and policies for sensor networks. Int. J. Distrib. Sens. Netw. 10 (2015)Google Scholar
  5. 5.
    Bishop, O.: Electronics—Circuits and Systems. Taylor & Francis (2012)Google Scholar
  6. 6.
    Brown, W.C.: The history of power transmission by radio waves. Trans. Microw. Theory Tech. 32(9), 1230–1242 (1984)CrossRefGoogle Scholar
  7. 7.
    Cliff, O.M., Fitch, R., Sukkarieh, S., Saunders, D.L., Heinsohn, R.: Online localization of radio-tagged wildlife with an autonomous aerial robot system. In: Proceedings of Robotics Science and Systems XI, pp. 13–17 (2015). http://www.roboticsproceedings.org/rss11/p42.pdf
  8. 8.
    Coleri, S., Puri, A., Varaiya, P.: Power efficient system for sensor networks. In: International Symposium on Computers and Communication, pp. 837–842 (2003)Google Scholar
  9. 9.
    Deyle, T., Reynolds, M.S., Kemp, C.C.: Finding and navigating to household objects with UHF RFID tags by optimizing RF signal strength. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 2579–2586 (2014). doi: 10.1109/IROS.2014.6942914
  10. 10.
    Ergen, S.C., Varaiya, P.: Pedamacs: power efficient and delay aware medium access protocol for sensor networks. Trans. Mob. Comput. 5(7), 920–930 (2006)CrossRefGoogle Scholar
  11. 11.
    Feeney, L.M., Nilsson, M.: Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. Conf. IEEE Comput. Commun. Soc. 3, 1548–1557 (2001)Google Scholar
  12. 12.
    Griffin, B.: Automated resonant wireless power transfer to remote sensors from an unmanned aerial vehicle. Master’s thesis, University of Nebraska—Lincoln, NE (2012)Google Scholar
  13. 13.
    Griffin, B., Detweiler, C.: Resonant wireless power transfer to ground sensors from a UAV. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (2012)Google Scholar
  14. 14.
    Grzonka, S., Grisetti, G., Burgard, W.: A fully autonomous indoor quadrotor. Trans. Rob. 28(1), 90–100 (2012)CrossRefGoogle Scholar
  15. 15.
    Honegger, D., Greisen, P., Meier, L., Tanskanen, P., Pollefeys, M.: Real-time velocity estimation based on optical flow and disparity matching. In: International Conference on Intelligent Robots and Systems (IROS), pp. 5177–5182 (2012)Google Scholar
  16. 16.
    Honegger, D., Meier, L., Tanskanen, P., Pollefeys, M.: An open source and open hardware embedded metric optical flow cmos camera for indoor and outdoor applications. In: International Conference on Robotics and Automation (IROS) (2013)Google Scholar
  17. 17.
    Hook, J.V., Tokekar, P., Isler, V.: Algorithms for cooperative active localization of static targets with mobile bearing sensors under communication constraints. IEEE Trans. Rob. 31(4), 864–876 (2015)CrossRefGoogle Scholar
  18. 18.
    Johnson, J., Basha, E., Detweiler, C.: Charge selection algorithms for maximizing sensor network life with UAV-based limited wireless recharging. In: Proceedings of IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) (2013)Google Scholar
  19. 19.
    Karalis, A., Joannopoulos, J.D., Soljačić, M.: Efficient wireless non-radiative mid-range energy transfer. Ann. Phys. 323(1), 34–48 (2008)CrossRefGoogle Scholar
  20. 20.
    Kendoul, F., Fantoni, I., Nonami, K.: Optic flow-based vision system for autonomous 3d localization and control of small aerial vehicles. Robot. Auton. Syst. 57(6), 591–602 (2009)CrossRefGoogle Scholar
  21. 21.
    LAB, N.J.P.: The global differential gps system. ScienceGoogle Scholar
  22. 22.
    Leng, J.: Using a uav to effectively prolong wireless sensor network lifetime with wireless power transfer. Master’s thesis, University of Nebraska—Lincoln, NE (2014)Google Scholar
  23. 23.
    Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z.: Wireless charging technologies: Fundamentals, standards, and network applications (2015)Google Scholar
  24. 24.
    Martinelli, F.: Robot localization using the phase of passive UHF-RFID Signals Under Uncertain Tag Coordinates. J. Intell. Robot. Syst. 1–17 (2015)Google Scholar
  25. 25.
    McSpadden, J.O., Mankins, J.C.: Space solar power programs and microwave wireless power transmission technology. Microwave Mag. 3(4), 46–57 (2002)CrossRefGoogle Scholar
  26. 26.
    Mittleider, A., Griffin, B., Detweiler, C.: Experimental analysis of a uav-based wireless power transfer localization system. In: Proceedings of International Symposium on Experimental Robotics (ISER) (2014)Google Scholar
  27. 27.
    Moore, J., Tedrake, R.: Magnetic localization for perching uavs on powerlines. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2700–2707. IEEE (2011)Google Scholar
  28. 28.
    Peng, Y., Li, Z., Zhang, W., Qiao, D.: Prolonging sensor network lifetime through wireless charging. In: RTSS, pp. 129–139 (2010)Google Scholar
  29. 29.
    Roundy, S., Steingart, D., Frechette, L., Wright, P., Rabaey, J.: Power sources for wireless sensor networks. In: Karl, H., Wolisz, A., Willig, A. (eds.) Wireless Sensor Networks. Lecture Notes in Computer Science, vol. 2920, pp. 1–17. Springer, Berlin Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Sample, A., Smith, J.R.: Experimental results with two wireless power transfer systems. In: Radio and Wireless Symposium, pp. 16–18 (2009)Google Scholar
  31. 31.
    Sample, A.P., Meyer, D.A., Smith, J.R.: Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. Trans. Industr. Electron. 58(2), 544–554 (2011)CrossRefGoogle Scholar
  32. 32.
    Seo, Y.S., Hughes, Z., Hoang, M., Isom, D., Nguyen, M., Rao, S., Chiao, J.C.: Investigation of wireless power transfer in through-wall applications. In: Microwave Conference Proceedings (APMC), pp. 403–405 (2012)Google Scholar
  33. 33.
    N.C.O. for Space-Based Positioning NavigationTiming, Global positioning system standard positioning service performance standard 4e. scienceGoogle Scholar
  34. 34.
    Tesla, N.: Apparatus for transmitting electrical energy (1914)Google Scholar
  35. 35.
    Tokekar, P., Bhadauria, D., Studenski, A., Isler, V.: A robotic system for monitoring carp in minnesota lakes. J. Field Robot. 27(6), 779789 (2010)CrossRefGoogle Scholar
  36. 36.
    Tong, B., Wang, G., Zhang, W., Wang, C.: Node reclamation and replacement for long-lived sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(9), 1550–1563 (2011)CrossRefGoogle Scholar
  37. 37.
    Wang, J., Schluntz, E., Otis, B., Deyle, T.: A new vision for smart objects and the Internet of Things: mobile robots and long-Range UHF RFID sensor tags (2015). arXiv:1507.02373
  38. 38.
    Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-slambased navigation for autonomous micro helicopters in gps-denied environments. J. Field Robot. 28(6), 854–874 (2011)CrossRefGoogle Scholar
  39. 39.
    Xie, L., Shi, Y., Hou, Y.T., Sherali, H.D.: Making sensor networks immortal: an energy-renewal approach with wireless power transfer. Trans. Networking 20(6), 1748–1761 (2012)CrossRefGoogle Scholar
  40. 40.
    Zhang, S., Wu, J., Lu, S.: Collaborative mobile charging for sensor networks. In: International Conference on Mobile Adhoc and Sensor Systems (MASS), pp. 84–92 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Carrick Detweiler
    • 1
    Email author
  • Michael Eiskamp
    • 2
  • Brent Griffin
    • 3
  • Jennifer Johnson
    • 2
  • Jinfu Leng
    • 1
  • Andrew Mittleider
    • 1
  • Elizabeth Basha
    • 2
  1. 1.Nebraska Intelligent MoBile Unmanned Systems (NIMBUS) Lab, Department of Computer Science and EngineeringUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of the PacificStocktonUSA
  3. 3.Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA

Personalised recommendations