Gene Structure and Gene Families

  • David B. Neale
  • Nicholas C. Wheeler


Approaches for the discovery of protein-coding genes were described in detail in Chap.  3. These included EST sequencing, RNA-seq, and full genome sequencing. Raw DNA sequences generated by these approaches are assembled into sets that are assumed to come from a single genetic locus. These are often called unigene sets. Currently, it is believed that there may be as many as 50,000 unique genes (unigenes) in conifer genomes, although this number will likely decline as more sequence data and better bioinformatics tools reveal that the number of unigenes has been overestimated. This can result from allelic or alternative splicing differences at a single locus. In this chapter, our goal is to discuss what is known about the structure (introns, exons, promoters, other regulatory regions) of conifer genes and their relationship to one another in gene families. The discussion is organized around functional classes of genes that have been of most interest in conifers.


  1. Alosi, M. C., & Neale, D. B. (1992). Light-and phytochrome-mediated gene expression in Douglas-fir seedlings. Physiologia Plantarum, 86(1), 71–76.CrossRefGoogle Scholar
  2. Alosi, M. C., Neale, D. B., & Kinlaw, C. S. (1990). Expression of cab genes in Douglas-fir is not strongly regulated by light. Plant Physiology, 93(2), 829–832.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bao, W., O’Malley, D. M., Whetten, R., & Sederoff, R. R. (1993). A laccase associated with lignification in loblolly pine xylem. Science, 260(5108), 672–672.PubMedCrossRefGoogle Scholar
  4. Barrett, J. W., Beech, R. N., Dancik, B. P., & Strobeck, C. (1994). A genomic clone of a type I cab gene encoding a light harvesting chlorophyll a/b binding protein of photosystem II identified from lodgepole pine. Genome, 37(1), 166–172.PubMedCrossRefGoogle Scholar
  5. Bedon, F., Grima-Pettenati, J., & Mackay, J. (2007). Conifer R2R3-MYB transcription factors: Sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC Plant Biology, 7(1), 17.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bedon, F., Levasseur, C., Grima-Pettenati, J., Séguin, A., & MacKay, J. (2009). Sequence analysis and functional characterization of the promoter of the Picea glauca Cinnamyl Alcohol Dehydrogenase gene in transgenic white spruce plants. Plant Cell Reports, 28(5), 787–800.PubMedCrossRefGoogle Scholar
  7. Bedon, F., Bomal, C., Caron, S., Levasseur, C., Boyle, B., Mansfield, S. D., et al. (2010). Subgroup 4 R2R3-MYBs in conifer trees: Gene family expansion and contribution to the isoprenoid-and flavonoid-oriented responses. Journal of Experimental Botany, 61(14), 3847–3864.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bohlmann, J., Steele, C. L., & Croteau, R. (1997). Monoterpene synthases from grand fir (Abies grandis) cDNA isolation, characterization, and functional expression of myrcene synthase, (−)-(4S)-limonene synthase, and (−)-(1S, 5S)-pinene synthase. Journal of Biological Chemistry, 272(35), 21784–21792.PubMedCrossRefGoogle Scholar
  9. Bohlmann, J., Crock, J., Jetter, R., & Croteau, R. (1998a). cDNA cloning, characterization, and functional expression of wound-inducible (E)-α-bisabolene synthase from grand fir (Abies grandis). Proceedings of the National Academy of Sciences USA, 95, 6756–6761.CrossRefGoogle Scholar
  10. Bohlmann, J., Meyer-Gauen, G., & Croteau, R. (1998b). Plant terpenoid synthases: Molecular biology and phylogenetic analysis. Proceedings of the National Academy of Sciences, 95(8), 4126–4133.CrossRefGoogle Scholar
  11. Bohlmann, J., Phillips, M., Ramachandiran, V., Katoh, S., & Croteau, R. (1999). cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Archives of Biochemistry and Biophysics, 368(2), 232–243.PubMedCrossRefGoogle Scholar
  12. Carlsbecker, A., Sundström, J., Tandre, K., Englund, M., Kvarnheden, A., Johanson, U., & Engström, P. (2003). The DAL10 gene from Norway spruce (Picea abies) belongs to a potentially gymnosperm-specific subclass of MADS-box genes and is specifically active in seed cones and pollen cones. Evolution & Development, 5(6), 551–561.CrossRefGoogle Scholar
  13. Chang, S., Puryear, J., Funkhouser, E. A., Newton, R. J., & Cairney, J. (1996). Cloning of a cDNA for a chitinase homologue which lacks chitin-binding sites and is down-regulated by water stress and wounding. Plant Molecular Biology, 31(3), 693–699.PubMedCrossRefGoogle Scholar
  14. Clapham, D. H., Kolukisaoglu, H. Ü., Larsson, C. T., Qamaruddin, M., Ekberg, I., Wiegmann-Eirund, C., et al. (1999). Phytochrome types in Picea and Pinus. Expression patterns of PHYA-related types. Plant Molecular Biology, 40(4), 669–678.PubMedCrossRefGoogle Scholar
  15. Côté, C. L., Boileau, F., Roy, V., Ouellet, M., Levasseur, C., Morency, M. J., et al. (2010). Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees. BMC Plant Biology, 10(1), 273.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Elmlinger, M. W., Bolle, C., Batschauer, A., Oelmüller, R., & Mohr, H. (1994). Coaction of blue light and light absorbed by phytochrome in control of glutamine synthetase gene expression in Scots pine (Pinus sylvestris L.) seedlings. Planta, 192(2), 189–194.PubMedCrossRefGoogle Scholar
  17. Fukui, M., Futamura, N., Mukai, Y., Wang, Y., Nagao, A., & Shinohara, K. (2001). Ancestral MADS box genes in sugi, Cryptomeria japonica D. Don (Taxodiaceae), homologous to the B function genes in angiosperms. Plant and Cell Physiology, 42(6), 566–575.PubMedCrossRefGoogle Scholar
  18. Galliano, H., Cabané, M., Eckerskorn, C., Lottspeich, F., Sandermann, H., & Ernst, D. (1993). Molecular cloning, sequence analysis and elicitor-/ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.). Plant Molecular Biology, 23(1), 145–156.PubMedCrossRefGoogle Scholar
  19. García-Gil, M. R. (2008). Evolutionary aspects of functional and pseudogene members of the phytochrome gene family in Scots pine. Journal of Molecular Evolution, 67(2), 222–232.PubMedCrossRefGoogle Scholar
  20. García-Gil, M. R., Mikkonen, M., & Savolainen, O. (2003). Nucleotide diversity at two phytochrome loci along a latitudinal cline in Pinus sylvestris. Molecular Ecology, 12(5), 1195–1206.PubMedCrossRefGoogle Scholar
  21. Geisler, K., Jensen, N. B., Yuen, M. M. S., Madilao, L., & Bohlmann, J. (2016). Modularity of conifer diterpene resin acid biosynthesis: P450 enzymes of different CYP720B clades use alternative substrates and converge on the same products. Plant Physiology, 171, 152–164.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gill, G. P., Brown, G. R., & Neale, D. B. (2003). A sequence mutation in the cinnamyl alcohol dehydrogenase gene associated with altered lignification in loblolly pine. Plant Biotechnology Journal, 1(4), 253–258.PubMedCrossRefGoogle Scholar
  23. Goldfarb, B., Lanz-Garcia, C., Lian, Z., & Whetten, R. (2003). Aux/IAA gene family is conserved in the gymnosperm, loblolly pine (Pinus taeda). Tree Physiology, 23(17), 1181–1192.PubMedCrossRefGoogle Scholar
  24. Gramzow, L., Weilandt, L., & Theißen, G. (2014). MADS goes genomic in conifers: Towards determining the ancestral set of MADS-box genes in seed plants. Annals of Botany, 114(7), 1407–1429.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Guillet-Claude, C., Isabel, N., Pelgas, B., & Bousquet, J. (2004). The evolutionary implications of knox-I gene duplications in conifers: Correlated evidence from phylogeny, gene mapping, and analysis of functional divergence. Molecular Biology and Evolution, 21(12), 2232–2245.PubMedCrossRefGoogle Scholar
  26. Hamberger, B., Ohnishi, T., Hamberger, B., Séguin, A., & Bohlmann, J. (2011). Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyses multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiology, 157, 1677–1695.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hedman, H., Zhu, T., von Arnold, S., & Sohlberg, J. J. (2013). Analysis of the Wuschel-related gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. BMC Plant Biology, 13(1), 89.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hutchison, K. W., Harvie, P. D., Singer, P. B., Brunner, A. F., & Greenwood, M. S. (1990). Nucleotide sequence of the small subunit of ribulose-1, 5-bisphosphate carboxylase from the conifer Larix laricina. Plant Molecular Biology, 14(2), 281–284.CrossRefGoogle Scholar
  29. Ingouff, M., Farbos, I., Lagercrantz, U., & von Arnold, S. (2001). PaHB1 is an evolutionary conserved HD-GL2 homeobox gene expressed in the protoderm during Norway spruce embryo development. Genesis, 30(4), 220–230.PubMedCrossRefGoogle Scholar
  30. Ingouff, M., Farbos, I., Wiweger, M., & von Arnold, S. (2003). The molecular characterization of PaHB2, a homeobox gene of the HD-GL2 family expressed during embryo development in Norway spruce. Journal of Experimental Botany, 54(386), 1343–1350.PubMedCrossRefGoogle Scholar
  31. Jansson, S., & Gustafsson, P. (1990). Type I and type II genes for the chlorophyll a/b-binding protein in the gymnosperm Pinus sylvestris (Scots pine): cDNA cloning and sequence analysis. Plant Molecular Biology, 14(3), 287–296.PubMedCrossRefGoogle Scholar
  32. Jansson, S., & Gustafsson, P. (1991). Evolutionary conservation of the chlorophyll a/b-binding proteins cDNAs encoding Type I, II and III LHC I polypeptides from the gymnosperm Scots pine. Molecular and General Genetics MGG, 229(1), 67–76.PubMedCrossRefGoogle Scholar
  33. Jermstad, K. D., Sheppard, L. A., Kinloch, B. B., Delfino-Mix, A., Ersoz, E. S., Krutovsky, K. V., & Neale, D. B. (2006). Isolation of a full-length CC–NBS–LRR resistance gene analog candidate from sugar pine showing low nucleotide diversity. Tree Genetics & Genomes, 2(2), 76.CrossRefGoogle Scholar
  34. Keeling, C. I., & Bohlmann, J. (2006a). Diterpene resin acids in conifers. Phytochemistry, 67(22), 2415–2423.PubMedCrossRefGoogle Scholar
  35. Keeling, C. I., Weisshaar, S., Ralph, S. G., Jancsik, S., Hamberger, B., Dullat, H. K., & Bohlmann, J. (2011). Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.). BMC Plant Biology, 11(1), 43.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kvarnheden, A., Tandre, K., & Engström, P. (1995). A cdc2 homologue and closely related processed retropseudogenes from Norway spruce. Plant Molecular Biology, 27(2), 391–403.PubMedCrossRefGoogle Scholar
  37. Kvarnheden, A., Albert, V. A., & Engström, P. (1998). Molecular evolution of cdc2 pseudogenes in spruce (Picea). Plant Molecular Biology, 36(5), 767–774.PubMedCrossRefGoogle Scholar
  38. Liu, J. J., & Xiang, Y. (2011). In silico mining and PCR-based approaches to transcription factor discovery in non-model plants: Gene discovery of the WRKY transcription factors in conifers. In Plant transcription factors (pp. 21–43). New York: Humana Press.CrossRefGoogle Scholar
  39. Liu, J. J., Ekramoddoullah, A. K., & Yu, X. (2003b). Differential expression of multiple PR10 proteins in western white pine following wounding, fungal infection and cold-hardening. Physiologia Plantarum, 119(4), 544–553.CrossRefGoogle Scholar
  40. Liu, J. J., Chan, D., Sturrock, R., & Sniezko, R. A. (2014). Genetic variation and population differentiation of the endochitinase gene family in Pinus monticola. Plant Systematics and Evolution, 300(6), 1313–1322.CrossRefGoogle Scholar
  41. MacKay, J. J., Liu, W., Whetten, R., Sederoff, R. R., & O'Malley, D. M. (1995). Genetic analysis of cinnamyl alcohol dehydrogenase in loblolly pine: Single gene inheritance, molecular characterization and evolution. Molecular and General Genetics MGG, 247(5), 537–545.PubMedCrossRefGoogle Scholar
  42. MacKay, J. J., O’Malley, D. M., Presnell, T., Booker, F. L., Campbell, M. M., Whetten, R. W., & Sederoff, R. R. (1997). Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proceedings of the National Academy of Sciences, 94(15), 8255–8260.CrossRefGoogle Scholar
  43. Martin, D. M., Fäldt, J., & Bohlmann, J. (2004). Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiology, 135(4), 1908–1927.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Mukai, Y., Tazaki, K., Fujii, T., & Yamamoto, N. (1992). Light-independent expression of three photosynthetic genes, cab, rbcS and rbcL, in coniferous plants. Plant and Cell Physiology, 33(7), 859–866.Google Scholar
  45. Nairn, C. J., & Haselkorn, T. (2005). Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiosperms. New Phytologist, 166(3), 907–915.PubMedCrossRefGoogle Scholar
  46. Nardmann, J., Reisewitz, P., & Werr, W. (2009). Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. Molecular Biology and Evolution, 26(8), 1745–1755.PubMedCrossRefGoogle Scholar
  47. O’Malley, D. M., Porter, S., & Sederoff, R. R. (1992). Purification, characterization, and cloning of cinnamyl alcohol dehydrogenase in loblolly pine (Pinus taeda L.). Plant Physiology, 98(4), 1364–1371.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Oku, T., Sugahara, K., & Tomita, G. (1974). Functional development of photosystems I and II in dark-grown pine seedlings. Plant and Cell Physiology, 15(1), 175–178.Google Scholar
  49. Patzlaff, A., McInnis, S., Courtenay, A., Surman, C., Newman, L. J., Smith, C., et al. (2003a). Characterization of a pine MYB that regulates lignification. The Plant Journal, 36(6), 743–754.PubMedCrossRefGoogle Scholar
  50. Patzlaff, A., Newman, L. J., Dubos, C., Whetten, R. W., Smith, C., McInnis, S., et al. (2003b). Characterisation of PtMYB1, an R2R3-MYB from pine xylem. Plant Molecular Biology, 53(4), 597–608.PubMedCrossRefGoogle Scholar
  51. Peter, G., & Neale, D. (2004). Molecular basis for the evolution of xylem lignification. Current Opinion in Plant Biology, 7(6), 737–742.PubMedCrossRefGoogle Scholar
  52. Ralph, J., MacKay, J. J., Hatfield, R. D., O’Malley, D. M., Whetten, R. W., & Sederoff, R. R. (1997). Abnormal lignin in a loblolly pine mutant. Science, 277(5323), 235–239.PubMedCrossRefGoogle Scholar
  53. Ro, D.-K., Arimura, G.-I., Lau, S. Y. W., Piers, E., & Bohlmann, J. (2005). Loblolly pine abietadienol/abietadienal oxidase PtAO is a multifunctional, multi-substrate cytochrome P450 monooxygenase. Proceedings of the National Academy of Sciences USA, 102, 8060–8065.CrossRefGoogle Scholar
  54. Sampedro, J., Carey, R. E., & Cosgrove, D. J. (2006). Genome histories clarify evolution of the expansin superfamily: New insights from the poplar genome and pine ESTs. Journal of Plant Research, 119(1), 11–21.PubMedCrossRefGoogle Scholar
  55. Sato, Y., Wuli, B., Sederoff, R., & Whetten, R. (2001). Molecular cloning and expression of eight laccase cDNAs in loblolly pine (Pinus taeda). Journal of Plant Research, 114(2), 147–155.CrossRefGoogle Scholar
  56. Steele, C. L., Crock, J., Bohlmann, J., & Croteau, R. (1998). Sesquiterpene synthases from grand fir (Abies grandis) comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ-selinene synthase and γ-humulene synthase. Journal of Biological Chemistry, 273(4), 2078–2089.PubMedCrossRefGoogle Scholar
  57. Stevens, K. A., Wegrzyn, J. L., Zimin, A., Puiu, D., Crepeau, M., Cardeno, C., et al. (2016). Sequence of the Sugar Pine Megagenome. Genetics, 204(4), 1613–1626.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Sundås-Larsson, A., Svenson, M., Liao, H., & Engström, P. (1998). A homeobox gene with potential developmental control function in the meristem of the conifer Picea abies. Proceedings of the National Academy of Sciences, 95(25), 15118–15122.CrossRefGoogle Scholar
  59. Tandre, K., Albert, V. A., Sundås, A., & Engström, P. (1995). Conifer homologues to genes that control floral development in angiosperms. Plant Molecular Biology, 27(1), 69–78.PubMedCrossRefGoogle Scholar
  60. Tandre, K., Svenson, M., Svensson, M. E., & Engström, P. (1998). Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. The Plant Journal, 15(5), 615–623.PubMedCrossRefGoogle Scholar
  61. Vogel, B. S., Wildung, M. R., Vogel, G., & Croteau, R. (1996). Abietadiene synthase from grand fir (Abies grandis) cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis. Journal of Biological Chemistry, 271(38), 23262–23268.PubMedCrossRefGoogle Scholar
  62. Warren, R. L., Keeling, C. I., Yuen, M. M. S., Raymond, A., Taylor, G. A., Vandervalk, B. P., et al. (2015). Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. The Plant Journal, 83(2), 189–212.PubMedCrossRefGoogle Scholar
  63. Whetten, R. W., & Sederoff, R. R. (1992). Phenylalanine ammonia-lyase from loblolly pine purification of the enzyme and isolation of complementary DNA clones. Plant Physiology, 98(1), 380–386.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Wu, H., Echt, C. S., Popp, M. P., & Davis, J. M. (1997). Molecular cloning, structure and expression of an elicitor-inducible chitinase gene from pine trees. Plant Molecular Biology, 33(6), 979–987.PubMedCrossRefGoogle Scholar
  65. Xue, B., Charest, P. J., Devantier, Y., & Rutledge, R. G. (2003). Characterization of a MYBR2R3 gene from black spruce (Picea mariana) that shares functional conservation with maize C1. Molecular Genetics and Genomics, 270(1), 78–86.PubMedCrossRefGoogle Scholar
  66. Yamamoto, N., Mukai, Y., Matsuoka, M., Kano-Murakami, Y., Tanaka, Y., Ohashi, Y., et al. (1991). Light-independent expression of cab and rbcS genes in dark-grown pine seedlings. Plant Physiology, 95(2), 379–383.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Yamamoto, N., Kojima, K., & Matsuoka, M. (1993). The presence of two types of gene that encode the chlorophyll a/b-binding protein (LHCPII) and their light-independent expression in pine (Pinus thunbergii). Plant and Cell Physiology, 34(3), 457–463.PubMedGoogle Scholar
  68. Yamamoto, N., Tada, Y., & Fujimura, T. (1994). The promoter of a pine photosynthetic gene allows expression of a β-glucuronidase reporter gene in transgenic rice plants in a light-independent but tissue-specific manner. Plant and Cell Physiology, 35(5), 773–778.PubMedCrossRefGoogle Scholar
  69. Zhang, X. H., & Chiang, V. L. (1997). Molecular cloning of 4-coumarate: Coenzyme A ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood. Plant Physiology, 113(1), 65–74.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations