Synchronized Shared Scene Viewing in Mixed VR Devices in Support of Group Collaboration

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9929)

Abstract

Virtual Reality devices are available with different resolutions and fields of view. Users can simultaneously interact within environments on head mounted displays, cell phones, tablets, and PowerWalls. Sharing scenes across devices requires solutions that smoothly synchronize shared navigation, minimize jitter and avoid visual confusion. In this paper we present a system that allows a single user to remotely guide many remote users in a virtual environment. A variety of mixed device environments are supported. Techniques are implemented to minimize jitter and synchronize views.

Keywords

VR Scene sharing Remote VR 

References

  1. 1.
    Jara, C.A., Candelas, F.A., Torres, F., Dormido, S., Esquembre, F., Reinoso, O.: Real-time collaboration of virtual laboratories through the internet. Comput. Educ. 52(1), 126–140 (2009)CrossRefGoogle Scholar
  2. 2.
    Zhu, J., Gong, J., Liu, W., Song, T., Zhang, J.: A collaborative virtual geographic environment based on p2p and grid technologies. Inf. Sci. 177(21), 4621–4633 (2007)CrossRefGoogle Scholar
  3. 3.
    Scheucher, B., Bailey, P.H., Gütl, C., Harward, J.V.: Collaborative virtual 3d environment for internet-accessible physics experiments. iJOE 5(S1), 65–71 (2009)Google Scholar
  4. 4.
    Ishibashi, Y., Asano, T.: Media synchronization control with prediction in a remote haptic calligraphy system. In: Proceedings of the International Conference on Advances in Computer Entertainment Technology, ACE 2007, pp. 79–86. ACM, New York, NY, USA (2007)Google Scholar
  5. 5.
    Macedonia, M.R., Zyda, M.J., Pratt, D.R., Barham, P.T., Zeswitz, S.: Npsnet: a network software architecture for largescale virtual environments. Presence Teleoperators Virtual Environ. 3(4), 265–287 (1994)CrossRefGoogle Scholar
  6. 6.
    Gossweiler, R., Laferriere, R.J., Keller, M.L., Pausch, R.: An introductory tutorial for developing multiuser virtual environments. Presence: Teleoperators Virtual Environ. 3(4), 255–264 (1994)CrossRefGoogle Scholar
  7. 7.
    Jeo, S., Kim, G.J.: Providing a wide field of view for effective interaction in desktop tangible augmented reality. In: Virtual Reality Conference, VR 2008, IEEE, pp. 3–10. IEEE (2008)Google Scholar
  8. 8.
    Bowman, D.A., Stinson, C., Ragan, E.D., Scerbo, S., Höllerer, T., Lee, C., McMahan, R.P., Kopper, R.: Evaluating effectiveness in virtual environments with mr simulation. In: Interservice/Industry Training, Simulation, and Education Conference (2012)Google Scholar
  9. 9.
    LaViola Jr., J.J.: discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32(1), 47–56 (2000)CrossRefGoogle Scholar
  10. 10.
    Park, K.S., Kenyon, R.V.: Effects of network characteristics on human performance in a collaborative virtual environment. In: Proceedings of the Virtual Reality, 1999. IEEE, pp. 104–111. IEEE (1999)Google Scholar
  11. 11.
    DiGioia, A.M., Jaramaz, B., Blackwell, M., Simon, D.A., Morgan, F., Moody, J.E., Nikou, C., Colgan, B.D., Aston, C.A., Labarca, R.S., et al.: Image guided navigation system to measure intraoperatively acetabular implant alignment. Clin. Orthop. Rela. Res. 355, 8–22 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Boise State UniversityBoiseUSA

Personalised recommendations