Evaluating Overall Quality of Dynamic Network Visualizations

  • Weidong HuangEmail author
  • Min Zhu
  • Mao Lin Huang
  • Henry Been-Lirn Duh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9929)


Visualizing dynamic networks is a challenging task. One of the challenges we face is how to maintain visual complexity and overall quality of visualizations at a reasonable and sustainable level so that the information about the network embedded in the visualization can be effectively comprehended by the viewer. Many techniques and algorithms have been proposed and developed to facilitate the discovery of changing patterns. Much research has also been done in investigating how visualization should be constructed to be effective. However, how to measure and compare the quality of visualizations of a changing network at different time points has not been well researched. In this paper, we report on a preliminary work towards this direction. In particular, we apply an existing multi-dimensional overall quality measure in a user study data of different networks and found that the measured quality is positively correlated with user task performance regardless of network size.


Cooperative visualization Quality metrics Evaluation Visualization Dynamic networks 


  1. 1.
    Janicke, H., Chen, M.: A salience-based quality metric for visualization. In: Proceedings ofthe 12th Eurographics/IEEE - VGTC Conference on Visualization (EuroVis 2010), pp. 1183–1192 (2010)Google Scholar
  2. 2.
    Eades, P., Hong, S.-H., Klein, K., Nguyen, A.: Shape-based quality metrics for large graph visualization. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 502–514. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-27261-0_41 CrossRefGoogle Scholar
  3. 3.
    Huang, W., Huang, M.L., Lin, C.-C.: Evaluating overall quality of graph visualizations based on aesthetics aggregation. Inf. Sci. 330, 444–454 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Huang, W., Eades, P., Hong, S.-H.: Measuring effectiveness of graph visualizations: a cognitive load perspective. Inf. Vis. 8(3), 139–152 (2009)CrossRefGoogle Scholar
  5. 5.
    Huang, W., Eades, P., Hong, S.-H., Lin, C.-C.: Improving multiple aesthetics produces better graph drawings. J. Vis. Lang. Comput. 24(4), 262–272 (2013)CrossRefGoogle Scholar
  6. 6.
    Friedrich, C., Eades, P.: Graph drawing in motion. JGAA 6(3), 353–370 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Moody, J., McFarland, D., Bender-DeMoll, S.: Dynamic network visualization. Am. J. Sociol. 110, 1206–1241 (2005)CrossRefGoogle Scholar
  8. 8.
    Bender-deMoll, S., McFarland, D.: The art and science of dynamic network visualization. J. Soc. Struct. 7(2) (2006)Google Scholar
  9. 9.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Vis. Lang. Comput. 6(2), 183–210 (1995)CrossRefGoogle Scholar
  10. 10.
    Minamoto, T., Shipstead, Z., Osaka, N., Engle, R.: Low cognitive load strengthens distractor interference while high load attenuates when cognitive load and distractor possess similar visual characteristics. Attention Percept. Psychophys. 77(5), 1659–1673 (2015)CrossRefGoogle Scholar
  11. 11.
    Archambault, D., Purchase, H.: The map in the mental map: experimental results in dynamic graph drawing. Int. J. Hum. Comput. Stud. 71(11), 1044–1055 (2013)CrossRefzbMATHGoogle Scholar
  12. 12.
    Diehl, S., Gorg, C., Kerren, A.: Preserving the mental map using foresighted layout. In: VisSym, pp. 175–184 (2001)Google Scholar
  13. 13.
    di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl. 7(5–6), 303–325 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ng, H.K., Kalyuga, S., Sweller, J.: Reducing transience during animation: a cognitive load perspective. Educ. Psychol. 33(7), 755–772 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Weidong Huang
    • 1
    Email author
  • Min Zhu
    • 2
  • Mao Lin Huang
    • 3
    • 4
  • Henry Been-Lirn Duh
    • 1
  1. 1.University of TasmaniaHobartAustralia
  2. 2.Sichuan UniversityChengduChina
  3. 3.Tianjin UniversityTianjinChina
  4. 4.University of Technology SydneyUltimoAustralia

Personalised recommendations