Deep Permutations: Deep Convolutional Neural Networks and Permutation-Based Indexing

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9939)

Abstract

The activation of the Deep Convolutional Neural Networks hidden layers can be successfully used as features, often referred as Deep Features, in generic visual similarity search tasks.

Recently scientists have shown that permutation-based methods offer very good performance in indexing and supporting approximate similarity search on large database of objects. Permutation-based approaches represent metric objects as sequences (permutations) of reference objects, chosen from a predefined set of data. However, associating objects with permutations might have a high cost due to the distance calculation between the data objects and the reference objects.

In this work, we propose a new approach to generate permutations at a very low computational cost, when objects to be indexed are Deep Features. We show that the permutations generated using the proposed method are more effective than those obtained using pivot selection criteria specifically developed for permutation-based methods.

Keywords

Similarity search Permutation-based indexing Deep convolutional neural network 

References

  1. 1.
    Amato, G., Debole, F., Falchi, F., Gennaro, C., Rabitti, F.: Large scale indexing and searching deep convolutional neural network features. In: Madria, S., Hara, T. (eds.) DaWaK 2016. LNCS, vol. 9829, pp. 213–224. Springer, Heidelberg (2016). doi:10.1007/978-3-319-43946-4_14 CrossRefGoogle Scholar
  2. 2.
    Amato, G., Esuli, A., Falchi, F.: Pivot selection strategies for permutation-based similarity search. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 91–102. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41062-8_10 CrossRefGoogle Scholar
  3. 3.
    Amato, G., Gennaro, C., Savino, P.: MI-File: using inverted files for scalable approximatesimilarity search. Multimedia Tools Appl. 1–30 (2012)Google Scholar
  4. 4.
    Amato, G., Gennaro, C., Savino, P.: MI-File: using inverted files for scalable approximate similarity search. Multimedia Tools Appl. 71(3), 1333–1362 (2014). doi:10.1007/s11042-012-1271-1 CrossRefGoogle Scholar
  5. 5.
    Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. arXiv preprint arXiv:1511.07247 (2015)
  6. 6.
    Azizpour, H., Razavian, A., Sullivan, J., Maki, A., Carlsson, S.: From generic to specific deep representations for visual recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 36–45 (2015)Google Scholar
  7. 7.
    Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 584–599. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_38 Google Scholar
  8. 8.
    Chandrasekhar, V., Lin, J., Morère, O., Goh, H., Veillard, A.: A practical guide to CNNs and fisher vectors for image instance retrieval. arXiv preprint arXiv:1508.02496 (2015)
  9. 9.
    Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering permutations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1647–1658 (2008)CrossRefGoogle Scholar
  10. 10.
    Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: a deep convolutional activation feature for generic visual recognition. arXiv preprint arXiv:1310.1531 (2013)
  11. 11.
    Esuli, A.: Use of permutation prefixes for efficient and scalable approximate similarity search. Inf. Process. Manag. 48(5), 889–902 (2012)CrossRefGoogle Scholar
  12. 12.
    Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp. 28–36. Society for Industrial and Applied Mathematics (2003)Google Scholar
  13. 13.
    Ge, Z., McCool, C., Sanderson, C., Corke, P.: Modelling local deep convolutional neural network features to improve fine-grained image classification. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 4112–4116. IEEE (2015)Google Scholar
  14. 14.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)Google Scholar
  15. 15.
    Jégou, H., Douze, M., Schmid, C.: Packing bag-of-features. In: IEEE 12th International Conference on Computer Vision, 29 November 2009–2 October 2009, pp. 2357–2364 (2009)Google Scholar
  16. 16.
    Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88682-2_24 CrossRefGoogle Scholar
  17. 17.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)
  18. 18.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  19. 19.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  20. 20.
    Liu, R., Zhao, Y., Wei, S., Zhu, Z., Liao, L., Qiu, S.: Indexing of CNN features for large scale image search. arXiv preprint arXiv:1508.00217 (2015)
  21. 21.
    Novak, D., Batko, M., Zezula, P.: Large-scale image retrieval using neural net descriptors. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1039–1040. ACM (2015)Google Scholar
  22. 22.
    Novak, D., Kyselak, M., Zezula, P.: On locality-sensitive indexing in generic metric spaces. In: Proceedings of the Third International Conference on Similarity Search and Applications, SISAP 2010, pp. 59–66. ACM (2010)Google Scholar
  23. 23.
    Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 512–519. IEEE (2014)Google Scholar
  24. 24.
    Thomee, B., Elizalde, B., Shamma, D.A., Ni, K., Friedland, G., Poland, D., Borth, D., Li, L.J.: YFCC100M: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016)CrossRefGoogle Scholar
  25. 25.
    Yue-Hei Ng, J., Yang, F., Davis, L.S.: Exploiting local features from deep networks for image retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 53–61 (2015)Google Scholar
  26. 26.
    Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp. 487–495 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.ISTI-CNRPisaItaly

Personalised recommendations