Advertisement

Joint Estimation of Cardiac Motion and \(T_1^*\) Maps for Magnetic Resonance Late Gadolinium Enhancement Imaging

  • Jens WetzlEmail author
  • Aurélien F. Stalder
  • Michaela Schmidt
  • Yigit H. Akgök
  • Christoph Tillmanns
  • Felix Lugauer
  • Christoph Forman
  • Joachim Hornegger
  • Andreas Maier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9902)

Abstract

In the diagnosis of myocardial infarction, magnetic resonance imaging can provide information about myocardial contractility and tissue characterization, including viability. In current clinical practice, separate scans are required for each aspect. A recently proposed method showed how the same information can be extracted from a single, short scan of \(4\,\text {s}\), but made strong assumptions about the underlying cardiac motion. We propose a fixed-point iteration scheme that retains the benefits of their approach while lifting its limitations, making it robust to cardiac arrhythmia. We compare our method to the state of the art using phantom data as well as data from 11 patients and show a consistent improvement of all evaluation criteria, e. g. the end-diastolic Dice coefficient of an arrythmic case improves from \(86\,\%\) (state-of-the-art method) to \(94\,\%\) (proposed method).

Notes

Acknowledgments

The authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative.

References

  1. 1.
    Burt, J.R., Zimmerman, S.L., Kamel, I.R., Halushka, M., Bluemke, D.A.: Myocardial T1 mapping: techniques and potential applications. RadioGraphics 34(2), 377–395 (2014)CrossRefGoogle Scholar
  2. 2.
    Detsky, J., Stainsby, J., Vijayaraghavan, R., Graham, J., Dick, A., Wright, G.: Inversion-recovery-prepared SSFP for cardiac-phase-resolved delayed-enhancement MRI. Magn. Reson. Med. 58(2), 365–372 (2007)CrossRefGoogle Scholar
  3. 3.
    Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)CrossRefGoogle Scholar
  4. 4.
    Gudbjartsson, H., Patz, S.: The rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)CrossRefGoogle Scholar
  5. 5.
    Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar
  6. 6.
    Li, W., Li, B.S., Polzin, J.A., Mai, V.M., Prasad, P.V., Edelman, R.R.: Myocardial delayed enhancement imaging using inversion recovery single-shot steady-state free precession: initial experience. J. Magn. Reson. Imaging 20(2), 327–330 (2004)CrossRefGoogle Scholar
  7. 7.
    Marty, B., Vignaud, A., Greiser, A., Robert, B., de Sousa, P.L., Carlier, P.G.: Bloch equations-based reconstruction of Myocardium T1 maps from modified look-locker inversion recovery sequence. PLoS ONE 10(5), 1–17 (2015)CrossRefGoogle Scholar
  8. 8.
    Messroghli, D.R., Radjenovic, A., Kozerke, S., Higgins, D.M., Sivananthan, M.U., Ridgway, J.P.: Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn. Reson. Med. 52(1), 141–146 (2004)CrossRefGoogle Scholar
  9. 9.
    Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  10. 10.
    Stalder, A.F., Speier, P., Zenge, M., Greiser, A., Tillmanns, C., Schmidt, M.: Cardiac multi-contrast CINE: real-time inversion-recovery balanced steady-state free precession imaging with compressed-sensing and motion-propagation. In: Proceedings of the 22nd Annual Meeting of ISMRM (2014). abstract 5667Google Scholar
  11. 11.
    Treibel, T., White, S., Moon, J.: Myocardial tissue characterization: histological and pathophysiological correlation. Curr. Cardiovasc. Imaging Rep. 7(3), 1–9 (2014)CrossRefGoogle Scholar
  12. 12.
    Xue, H., Shah, S., Greiser, A., Guetter, C., Littmann, A., Jolly, M.P., Arai, A.E., Zuehlsdorff, S., Guehring, J., Kellman, P.: Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn. Reson. Med. 67(6), 1644–1655 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Jens Wetzl
    • 1
    • 2
    Email author
  • Aurélien F. Stalder
    • 3
  • Michaela Schmidt
    • 3
  • Yigit H. Akgök
    • 1
  • Christoph Tillmanns
    • 4
  • Felix Lugauer
    • 1
  • Christoph Forman
    • 3
  • Joachim Hornegger
    • 1
    • 2
  • Andreas Maier
    • 1
    • 2
  1. 1.Pattern Recognition LabFAU Erlangen-NürnbergErlangenGermany
  2. 2.Graduate School in Advanced Optical Technologies (SAOT)ErlangenGermany
  3. 3.Siemens Healthcare GmbH, Diagnostic Imaging, MRErlangenGermany
  4. 4.Diagnostikum BerlinBerlinGermany

Personalised recommendations