Advertisement

Axial Alignment for Anterior Segment Swept Source Optical Coherence Tomography via Robust Low-Rank Tensor Recovery

  • Yanwu XuEmail author
  • Lixin Duan
  • Huazhu Fu
  • Xiaoqin Zhang
  • Damon Wing Kee Wong
  • Baskaran Mani
  • Tin Aung
  • Jiang Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9902)

Abstract

We present a one-step approach based on low-rank tensor recovery for axial alignment in 360-degree anterior chamber optical coherence tomography. Achieving translational alignment and rotation correction of cross-sections simultaneously, this technique obtains a better anterior segment topographical representation and improves quantitative measurement accuracy and reproducibility of disease related parameters. Through its use of global information, the proposed method is more robust compared to using only individual or paired slices, and less sensitive to noise and motion artifacts. In angle closure analysis on 30 patient eyes, the preliminary results indicate that the proposed axial alignment method can not only facilitate manual qualitative analysis with more distinct landmark representation and much less human labor, but also can improve the accuracy of automatic quantitative assessment by 2.9 %, which demonstrates that the proposed approach is promising for a wide range of clinical applications.

References

  1. 1.
    Gora, M., Karnowski, K., Szkulmowski, M., Kaluzny, B.J., Huber, R., Kowalczyk, A., Wojtkowski, M.: Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Opt. Express 17(17), 14880–14894 (2009)CrossRefGoogle Scholar
  2. 2.
    Lim, S.H.: Clinical applications of anterior segment optical coherence tomography. J. Ophthalmol. Article ID 605729, 12 (2015)Google Scholar
  3. 3.
    Maslin, J.S., Barkana, Y., Dorairaj, S.K.: Anterior segment imaging in glaucoma: an updated review. Indian J. Ophthalmol. 63(8), 630–640 (2015)CrossRefGoogle Scholar
  4. 4.
    Sakata, L.M., Lavanya, R., Friedman, D.S., Aung, H.T., Seah, S.K., Foster, P.J., Aung, T.: Assessment of the scleral spur in anterior segment optical coherence tomography images. Arch Ophthalmol. 126(2), 181–185 (2008)CrossRefGoogle Scholar
  5. 5.
    Mishima, K., Tomidokoro, A., Suramethakul, P., Mataki, N., Kurita, N., Mayama, C., Araie, M.: Iridotrabecular contact observed using anterior segment three-dimensional OCT in eyes with a shallow peripheral anterior chamber. Invest. Ophthalmol. Vis. Sci. 54(7), 4628–4635 (2013)CrossRefGoogle Scholar
  6. 6.
    Li, P., Johnstone, M., Wang, R.K.: Full anterior segment biometry with extended imaging range spectral domain optical coherence tomography at 1340 nm. J. Biomed. Opt. 19(4), 046013 (2014)CrossRefGoogle Scholar
  7. 7.
    The cornea/anterior segment OCT SS-1000 ‘CASIA’. http://www.tomey.com/Products/OCT/SS-1000CASIA.html
  8. 8.
    Xu, J., Ishikawa, H., Wollstein, G., Kagemann, L., Schuman, J.S.: Alignment of 3-D optical coherence tomography scans to correct eye movement using a particle filtering. IEEE Trans. Med. Image 31(7), 1337–1345 (2012)CrossRefGoogle Scholar
  9. 9.
    Montuoro, A., Wu, J., Waldstein, S., Gerendas, B., Langs, G., Simader, C., Schmidt-Erfurth, U.: Motion artefact correction in retinal optical coherence tomography using local symmetry. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 130–137. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Navarro, R., González, L., Hernández, L.: Optics of the average normal cornea from general and canonical representations of its surface topography. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 23(2), 219–232 (2006)CrossRefGoogle Scholar
  11. 11.
    Xu, Y., Liu, J., Tan, N.M., Lee, B.H., Wong, D.W.K., Baskaran, M., Perera, S., Aung, T.: Anterior chamber angle classification using multiscale histograms of oriented gradients for glaucoma subtype identification. In: IEEE Engineering in Medicine and Biology Society, pp. 3167–3170 (2012)Google Scholar
  12. 12.
    Xu, Y., Liu, J., Cheng, J., Lee, B.H., Wong, D.W.K., Baskaran, M., Perera, S., Aung, T.: Automated anterior chamber angle localization and glaucoma type classification in OCT images. In: IEEE Engineering in Medicine and Biology Society, pp. 7380–7383 (2013)Google Scholar
  13. 13.
    Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)CrossRefGoogle Scholar
  14. 14.
    Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Xu, Y., Liu, J., Wong, D.W.K., Baskaran, M., Perera, S., Aung, T.: Similarity-weighted linear reconstruction of anterior chamber angles for glaucoma classification. In: IEEE International Symposium on Biomedical Imaging, pp. 693–697 (2016)Google Scholar
  16. 16.
    Peng, Y., Ganesh, A., Wright, J., Ma, Y.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. In: CVPR, pp. 2233–2246 (2013)Google Scholar
  17. 17.
    Lin, Z., Chen, M., Wu, L., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical report UILU-ENG-09-2215 (2009)Google Scholar
  18. 18.
    Yang, J., Yuan, X.: Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82(281), 301–329 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Yanwu Xu
    • 1
    Email author
  • Lixin Duan
    • 2
  • Huazhu Fu
    • 1
  • Xiaoqin Zhang
    • 3
  • Damon Wing Kee Wong
    • 1
  • Baskaran Mani
    • 4
  • Tin Aung
    • 4
  • Jiang Liu
    • 1
    • 5
  1. 1.Institute for Infocomm Research, Agency for Science, Technology and ResearchSingaporeSingapore
  2. 2.AmazonSeattleUSA
  3. 3.Wenzhou UniversityWenzhouChina
  4. 4.Singapore Eye Research InstituteSingaporeSingapore
  5. 5.Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina

Personalised recommendations