Inertial Demons: A Momentum-Based Diffeomorphic Registration Framework

  • Andre Santos-RibeiroEmail author
  • David J. Nutt
  • John McGonigle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9902)


Non-linear registration is an essential part of modern neuroimaging analysis, from morphometrics to functional studies. To be practical, non-linear registration methods must be precise and computational efficient. Current algorithms based on Thirion’s demons achieve high accuracies while having desirable properties such as diffeomorphic deformation fields. However, the increased complexity of these methods lead to a decrease in their efficiency. Here we propose a modification of the demons algorithm that both improves the accuracy and convergence speed, while maintaining the characteristics of a diffeomorphic registration. Our method outperforms all the analysed demons approaches in terms of speed and accuracy. Furthermore, this improvement is not limited to the demons algorithm, but applicable in most typical deformable registration algorithms.


  1. 1.
    Arbel, T., De Nigris, D.: Fast and efficient image registration based on gradient orientations of minimal uncertainty. In: International Symposium on Biomed Imaging, pp. 1163–1166 (2015)Google Scholar
  2. 2.
    Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007)CrossRefGoogle Scholar
  3. 3.
    Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008)CrossRefGoogle Scholar
  4. 4.
    Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N.: Iconic feature based nonrigid registration: the PASHA algorithm. Comput. Vis. Image Und. 89, 272–298 (2003)CrossRefGoogle Scholar
  5. 5.
    Cachier, P., Pennec, X., Ayache, N.: Fast non-rigid matching by gradient descent: study and improvement of the demons algorithm. INRIA RR-3706 (1999)Google Scholar
  6. 6.
    Demirovic, D., Serifovic-Trbalic, A., Prljaca, N., Cattin, P.: Bilateral filter regularized accelerated demons for improved discontinuity preserving registration. Comput. Med. Imaging Graph. 40, 94–99 (2015)CrossRefGoogle Scholar
  7. 7.
    Lorenzi, M., Ayache, N., Frisoni, G., Pennec, X.: LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm. Neuroimage 81, 470–483 (2013)CrossRefGoogle Scholar
  8. 8.
    Lu, H., Reyes, M., Serifovi, A., Weber, S., Sakurai, Y., Yamagata, H., Cattin, P.: Multi-modal diffeomorphic demons registration based on point-wise mutual information. In: International Symposium on Biomed Imaging, pp. 372–375 (2010)Google Scholar
  9. 9.
    Malis, E.: Improving vision-based control using efficient second-order minimization techniques. IEEE Int. Conf. Robot. 2, 1843–1848 (2004)Google Scholar
  10. 10.
    Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM J. Appl. Math. 45(1), 3–49 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Pennec, X., Cachier, P., Ayache, N.: Understanding the “Demon’s Algorithm”: 3D non-rigid registration by gradient descent. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 597–605. Springer, Heidelberg (1999). doi: 10.1007/10704282_64CrossRefGoogle Scholar
  12. 12.
    Rueckert, D., Aljabar, P., Heckemann, R.A., Hajnal, J.V., Hammers, A.: Diffeomorphic registration using B-splines. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 702–709. Springer, Heidelberg (2006). doi: 10.1007/11866763_86CrossRefGoogle Scholar
  13. 13.
    Ribeiro, A.S., Nutt, D.J., McGonigle, J.: Which metrics should be used in non-linear registration evaluation? In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 388–395. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24571-3_47CrossRefGoogle Scholar
  14. 14.
    Thirion, J.: Image matching as a diffusion process: an analogy with maxwells demons. Med. Image Anal. 2(3), 243–260 (1998)CrossRefGoogle Scholar
  15. 15.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75759-7_39CrossRefGoogle Scholar
  16. 16.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain diffeomorphic registration: a demons-based approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85988-8_90CrossRefGoogle Scholar
  17. 17.
    Wang, H., Dong, L., O’Daniel, J., Mohan, R., Garden, A., Ang, K., Kuban, D., Bonnen, M., Chang, J., Cheung, R.: Validation of an accelerated ‘demons’ algorithm for deformable image registration in radiation therapy. Phys. Med. Biol. 50(12), 2887–2905 (2005)CrossRefGoogle Scholar
  18. 18.
    Yang, D., Li, H., Low, D., Deasy, J., Naqa, I.: A fast inverse consistent deformable image registration method based on symmetric optical flow computation. Phys. Med. Biol. 53(21), 6143–6165 (2008)CrossRefGoogle Scholar
  19. 19.
    Zikic, D., Baust, M., Kamen, A., Navab, N.: Natural gradients for deformable registration. In: Proceedings of the CVPR, pp. 2847–2854. IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Andre Santos-Ribeiro
    • 1
    Email author
  • David J. Nutt
    • 1
  • John McGonigle
    • 1
  1. 1.Centre for Neuropsychopharmacology, Division of Brain Sciences, Department of MedicineImperial College LondonLondonUK

Personalised recommendations