From Real MRA to Virtual MRA: Towards an Open-Source Framework

  • N. Passat
  • S. Salmon
  • J.-P. Armspach
  • B. Naegel
  • C. Prud’homme
  • H. Talbot
  • A. Fortin
  • S. Garnotel
  • O. Merveille
  • O. Miraucourt
  • R. Tarabay
  • V. Chabannes
  • A. Dufour
  • A. Jezierska
  • O. Balédent
  • E. Durand
  • L. Najman
  • M. Szopos
  • A. Ancel
  • J. Baruthio
  • M. Delbany
  • S. Fall
  • G. Pagé
  • O. Génevaux
  • M. Ismail
  • P. Loureiro de Sousa
  • M. Thiriet
  • J. Jomier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9902)

Abstract

Angiographic imaging is a crucial domain of medical imaging. In particular, Magnetic Resonance Angiography (MRA) is used for both clinical and research purposes. This article presents the first framework geared toward the design of virtual MRA images from real MRA images. It relies on a pipeline that involves image processing, vascular modeling, computational fluid dynamics and MR image simulation, with several purposes. It aims to provide to the whole scientific community (1) software tools for MRA analysis and blood flow simulation; and (2) data (computational meshes, virtual MRAs with associated ground truth), in an open-source/open-data paradigm. Beyond these purposes, it constitutes a versatile tool for progressing in the understanding of vascular networks, especially in the brain, and the associated imaging technologies.

References

  1. 1.
    Lesage, D., Angelini, E.D., Bloch, I., et al.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13, 819–845 (2009)CrossRefGoogle Scholar
  2. 2.
    Cocosco, C.A., Kollokian, V., Kwan, R.K.S., et al.: BrainWeb: online interface to a 3D MRI simulated brain database. NeuroImage 5(4 Pt 2), S425 (1997)Google Scholar
  3. 3.
    Schaap, M., Metz, C.T., van Walsum, T., et al.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med. Image Anal. 13, 701–714 (2009)CrossRefGoogle Scholar
  4. 4.
    Ford, M.D., Stuhne, G.R., Nikolov, H.N., et al.: Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans. Med Imaging 24, 1586–1592 (2005)CrossRefGoogle Scholar
  5. 5.
    Merveille, O., Miraucourt, O., Talbot, H., et al.: A variational model for thin structure segmentation based on a directional regularization. In: ICIP (2016)Google Scholar
  6. 6.
    Merveille, O., Talbot, H., Najman, et al.: Tubular structure analysis by ranking the orientation responses of path operators. Technical Report hal-01262728 (2016)Google Scholar
  7. 7.
    Thiriet, M.: Biology and Mechanics of Blood Flows, Part I: Biology of Blood Flows, Part II: Mechanics and Medical Aspects of Blood Flows. Springer, New York (2008)MATHGoogle Scholar
  8. 8.
    Stoquart-Elsankari, S., Lehmann, P., Villette, A., et al.: A phase-contrast MRI study of physiologic cerebral venous flow. Cereb. Blood Flow Metab. 29, 1208–1215 (2005)CrossRefGoogle Scholar
  9. 9.
    Ho, H., Mithraratne, K., Hunter, P.: Numerical simulation of blood flow in an anatomically-accurate cerebral venous tree. IEEE Trans. Med Imaging 32, 85–91 (2013)CrossRefGoogle Scholar
  10. 10.
    Boissonnat, J.D., Chaine, R., Frey, P., et al.: From arteriographies to computational flow in saccular aneurisms: the INRIA experience. Med. Image Anal. 9, 133–143 (2005)CrossRefGoogle Scholar
  11. 11.
    Fortin, A., Salmon, S., Baruthio, J., et al.: High performance MRI simulation of arbitrarily complex flow: a versatile framework. Technical Report hal-01326698 (2016)Google Scholar
  12. 12.
    Staal, J.J., Abramoff, M.D., Niemeijer, M., et al.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag 23, 501–509 (2004)CrossRefGoogle Scholar
  13. 13.
    Ancel, A., Fortin, A., Garnotel, S., et al.: Phantom project. Technical Report hal-01222281 (2015)Google Scholar
  14. 14.
    Passat, N., Ronse, C., Baruthio, J., et al.: Magnetic resonance angiography: from anatomical knowledge modeling to vessel segmentation. Med. Image Anal. 10, 259–274 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • N. Passat
    • 1
  • S. Salmon
    • 1
  • J.-P. Armspach
    • 2
  • B. Naegel
    • 2
  • C. Prud’homme
    • 2
  • H. Talbot
    • 3
  • A. Fortin
    • 1
  • S. Garnotel
    • 1
    • 4
  • O. Merveille
    • 1
    • 3
  • O. Miraucourt
    • 1
    • 3
  • R. Tarabay
    • 1
    • 2
  • V. Chabannes
    • 5
  • A. Dufour
    • 2
  • A. Jezierska
    • 3
  • O. Balédent
    • 4
  • E. Durand
    • 2
  • L. Najman
    • 3
  • M. Szopos
    • 2
  • A. Ancel
    • 2
  • J. Baruthio
    • 2
  • M. Delbany
    • 2
  • S. Fall
    • 2
    • 4
  • G. Pagé
    • 4
  • O. Génevaux
    • 2
  • M. Ismail
    • 5
  • P. Loureiro de Sousa
    • 2
  • M. Thiriet
    • 6
  • J. Jomier
    • 7
    • 8
  1. 1.Université de Reims Champagne-Ardenne, CReSTIC and LMRReimsFrance
  2. 2.Université de Strasbourg, CNRS, ICube and IRMAStrasbourgFrance
  3. 3.Université Paris-Est, ESIEE, CNRS, LIGMParisFrance
  4. 4.Université Picardie Jules Verne, BioFlow ImageAmiensFrance
  5. 5.Université de Grenoble, CNRS, LJK and LIPhyGrenobleFrance
  6. 6.Université Paris 6, CNRS, INRIA, LJLLParisFrance
  7. 7.Kitware SASVilleurbanneFrance
  8. 8.Kitware SASNew YorkUSA

Personalised recommendations