Myocardial Segmentation of Contrast Echocardiograms Using Random Forests Guided by Shape Model

  • Yuanwei Li
  • Chin Pang Ho
  • Navtej Chahal
  • Roxy Senior
  • Meng-Xing TangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9902)


Myocardial Contrast Echocardiography (MCE) with micro-bubble contrast agent enables myocardial perfusion quantification which is invaluable for the early detection of coronary artery diseases. In this paper, we proposed a new segmentation method called Shape Model guided Random Forests (SMRF) for the analysis of MCE data. The proposed method utilizes a statistical shape model of the myocardium to guide the Random Forest (RF) segmentation in two ways. First, we introduce a novel Shape Model (SM) feature which captures the global structure and shape of the myocardium to produce a more accurate RF probability map. Second, the shape model is fitted to the RF probability map to further refine and constrain the final segmentation to plausible myocardial shapes. Evaluated on clinical MCE images from 15 patients, our method obtained promising results (Dice = 0.81, Jaccard = 0.70, MAD = 1.68 mm, HD = 6.53 mm) and showed a notable improvement in segmentation accuracy over the classic RF and its variants.



The authors would like to thank Prof. Daniel Rueckert, Liang Chen and other members from the BioMedIA group for their help and advice. This work was supported by the Imperial College PhD Scholarship.


  1. 1.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  2. 2.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  3. 3.
    Criminisi, A., Robertson, D.P., Konukoglu, E., Shotton, J., Pathak, S., White, S., Siddiqui, K.: Regression forests for efficient anatomy detection and localization in computed tomography scans. Med. Image Anal. 17(8), 1293–1303 (2013)CrossRefGoogle Scholar
  4. 4.
    Cristinacce, D., Cootes, T.F.: Automatic feature localisation with constrained local models. Pattern Recogn. 41(10), 3054–3067 (2008)CrossRefGoogle Scholar
  5. 5.
    van Ginneken, B., Frangi, A.F., Staal, J., ter Haar Romeny, B.M., Viergever, M.A.: Active shape model segmentation with optimal features. IEEE Trans. Med. Imaging 21(8), 924–933 (2002)CrossRefGoogle Scholar
  6. 6.
    Kontschieder, P., Bulò, S.R., Bischof, H., Pelillo, M.: Structured class-labels in random forests for semantic image labelling. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) ICCV 2011, pp. 2190–2197. IEEE, Washington, DC (2011)Google Scholar
  7. 7.
    Lempitsky, V., Verhoek, M., Noble, J.A., Blake, A.: Random forest classification for automatic delineation of myocardium in real-time 3D echocardiography. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 447–456. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Lombaert, H., Criminisi, A., Ayache, N.: Spectral forests: learning of surface data, application to cortical parcellation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 547–555. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24553-9_67CrossRefGoogle Scholar
  9. 9.
    Ma, M., van Stralen, M., Reiber, J.H.C., Bosch, J.G., Lelieveldt, B.P.F.: Left ventricle segmentation from contrast enhanced fast rotating ultrasound images using three dimensional active shape models. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 295–302. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Tang, M.X., Mulvana, H., Gauthier, T., Lim, A.K.P., Cosgrove, D.O., Eckersley, R.J., Stride, E.: Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability. Interface Focus 1(4), 520–539 (2011)CrossRefGoogle Scholar
  12. 12.
    Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 32(10), 1744–1757 (2010)CrossRefGoogle Scholar
  13. 13.
    Wei, K., Jayaweera, A.R., Firoozan, S., Linka, A., Skyba, D.M., Kaul, S.: Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97(5), 473–483 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Yuanwei Li
    • 1
  • Chin Pang Ho
    • 2
  • Navtej Chahal
    • 3
  • Roxy Senior
    • 3
  • Meng-Xing Tang
    • 1
    Email author
  1. 1.Department of BioengineeringImperial College LondonLondonUK
  2. 2.Department of ComputingImperial College LondonLondonUK
  3. 3.Department of EchocardiographyRoyal Brompton HospitalLondonUK

Personalised recommendations