Myocardial Segmentation of Contrast Echocardiograms Using Random Forests Guided by Shape Model

  • Yuanwei Li
  • Chin Pang Ho
  • Navtej Chahal
  • Roxy Senior
  • Meng-Xing Tang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9902)

Abstract

Myocardial Contrast Echocardiography (MCE) with micro-bubble contrast agent enables myocardial perfusion quantification which is invaluable for the early detection of coronary artery diseases. In this paper, we proposed a new segmentation method called Shape Model guided Random Forests (SMRF) for the analysis of MCE data. The proposed method utilizes a statistical shape model of the myocardium to guide the Random Forest (RF) segmentation in two ways. First, we introduce a novel Shape Model (SM) feature which captures the global structure and shape of the myocardium to produce a more accurate RF probability map. Second, the shape model is fitted to the RF probability map to further refine and constrain the final segmentation to plausible myocardial shapes. Evaluated on clinical MCE images from 15 patients, our method obtained promising results (Dice = 0.81, Jaccard = 0.70, MAD = 1.68 mm, HD = 6.53 mm) and showed a notable improvement in segmentation accuracy over the classic RF and its variants.

References

  1. 1.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  3. 3.
    Criminisi, A., Robertson, D.P., Konukoglu, E., Shotton, J., Pathak, S., White, S., Siddiqui, K.: Regression forests for efficient anatomy detection and localization in computed tomography scans. Med. Image Anal. 17(8), 1293–1303 (2013)CrossRefGoogle Scholar
  4. 4.
    Cristinacce, D., Cootes, T.F.: Automatic feature localisation with constrained local models. Pattern Recogn. 41(10), 3054–3067 (2008)CrossRefMATHGoogle Scholar
  5. 5.
    van Ginneken, B., Frangi, A.F., Staal, J., ter Haar Romeny, B.M., Viergever, M.A.: Active shape model segmentation with optimal features. IEEE Trans. Med. Imaging 21(8), 924–933 (2002)CrossRefGoogle Scholar
  6. 6.
    Kontschieder, P., Bulò, S.R., Bischof, H., Pelillo, M.: Structured class-labels in random forests for semantic image labelling. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) ICCV 2011, pp. 2190–2197. IEEE, Washington, DC (2011)Google Scholar
  7. 7.
    Lempitsky, V., Verhoek, M., Noble, J.A., Blake, A.: Random forest classification for automatic delineation of myocardium in real-time 3D echocardiography. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 447–456. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Lombaert, H., Criminisi, A., Ayache, N.: Spectral forests: learning of surface data, application to cortical parcellation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 547–555. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24553-9_67 CrossRefGoogle Scholar
  9. 9.
    Ma, M., van Stralen, M., Reiber, J.H.C., Bosch, J.G., Lelieveldt, B.P.F.: Left ventricle segmentation from contrast enhanced fast rotating ultrasound images using three dimensional active shape models. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 295–302. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Tang, M.X., Mulvana, H., Gauthier, T., Lim, A.K.P., Cosgrove, D.O., Eckersley, R.J., Stride, E.: Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability. Interface Focus 1(4), 520–539 (2011)CrossRefGoogle Scholar
  12. 12.
    Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 32(10), 1744–1757 (2010)CrossRefGoogle Scholar
  13. 13.
    Wei, K., Jayaweera, A.R., Firoozan, S., Linka, A., Skyba, D.M., Kaul, S.: Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97(5), 473–483 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Yuanwei Li
    • 1
  • Chin Pang Ho
    • 2
  • Navtej Chahal
    • 3
  • Roxy Senior
    • 3
  • Meng-Xing Tang
    • 1
  1. 1.Department of BioengineeringImperial College LondonLondonUK
  2. 2.Department of ComputingImperial College LondonLondonUK
  3. 3.Department of EchocardiographyRoyal Brompton HospitalLondonUK

Personalised recommendations