Advertisement

Quantifying Shape Deformations by Variation of Geometric Spectrum

  • Hajar Hamidian
  • Jiaxi Hu
  • Zichun Zhong
  • Jing HuaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9902)

Abstract

This paper presents a registration-free method based on geometry spectrum for mapping two shapes. Our method can quantify and visualize the surface deformation by the variation of Laplace-Beltrami spectrum of the object. In order to examine our method, we employ synthetic data that has non-isometric deformation. We have also applied our method to quantifying the shape variation between the left and right hippocampus in epileptic human brains. The results on both synthetic and real patient data demonstrate the effectiveness and accuracy of our method.

Keywords

Laplace-Beltrami spectrum Registration-free mapping Shape deformation 

Notes

Acknowledgements

We would like to thank Dr. Hamid Soltanian-Zadeh from Department of Radiology at Henry Ford Health System to provide the data for mTLE study. The research is supported in part by grants NSF IIS-0915933, IIS-0937586 and LZ16F020002.

References

  1. 1.
    Tsuzukia, D., Watanabec, H., Danb, I., Taga, G.: Minr 10/20 system: quantitative and reproducible cranial landmark setting method for mri based on minimum initial reference points. Neurosci. Methods 264, 86–93 (2016)CrossRefGoogle Scholar
  2. 2.
    Zou, G., Hua, J., Lai, Z., Gu, X., Dong, M.: Intrinsic geometric scale space by shape diffusion. IEEE Trans. Vis. Comput. Graph. 15, 1193–1200 (2009)CrossRefGoogle Scholar
  3. 3.
    Jenkinson, M., Bannister, P., Brady, J., Smith, S.: Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002)CrossRefGoogle Scholar
  4. 4.
    Reuter, M., Wolter, F., Peinecke, N.: Laplace-beltrami spectra as “shape-DNA” of surfaces and solids. Comput. Aided Des. 38, 342–366 (2006)CrossRefGoogle Scholar
  5. 5.
    Levy, B.: Laplace-beltrami eigenfunctions: towards an algorithm that understands geometry. In: IEEE International Conference on Shape Modeling and Applications, invited talk (2006)Google Scholar
  6. 6.
    Reuter, M., Wolter, F., Shenton, M., Niethammer, M.: Laplace beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis. Comput. Aided Des. 35, 2284–2297 (2009)Google Scholar
  7. 7.
    Reuter, M.: Hierarchical shape segmentation and registration via topological features of laplace-beltrami eigenfunctions. Inter. J. Comput. Vis. 89, 287–308 (2010)CrossRefGoogle Scholar
  8. 8.
    Konukoglu, E., Glocker, B., Criminisi, A., Pohl, K.M.: WESD-weighted spectral distance for measuring shape dissimilarity. IEEE Trans. Pattern. Anal. Mach. Intell. 89, 287–308 (2013)Google Scholar
  9. 9.
    Ruggeri, M.R., Patanè, G., Spagnuolo, M., Saupe, D.: Spectral-driven isometry-invariant matching of 3D shapes. Inter. J. Comput. Vis. 89, 248–265 (2010)CrossRefGoogle Scholar
  10. 10.
    Shi, Y., Lai, R., Kern, K., Sicotte, N., Dinov, I., Toga, A.W.: Harmonic surface mapping with Laplace-Beltrami eigenmaps. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5242, pp. 147–154. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85990-1_18CrossRefGoogle Scholar
  11. 11.
    Shi, Y., Lai, R., Gill, R., Pelletier, D., Mohr, D., Sicotte, N., Toga, A.W.: Conformal metric optimization on surface (CMOS) for deformation and mapping in Laplace-Beltrami embedding space. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 327–334. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23629-7_40CrossRefGoogle Scholar
  12. 12.
    Grinfeld, P.: Hadamard’s formula inside and out. J. Optim. Theory Appl. 146, 654–690 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans. Pattern. Anal. Mach. Intell. 14, 239–256 (1992)CrossRefGoogle Scholar
  14. 14.
    Jafari-Khouzania, K., Elisevichb, K., Patela, S., Smithc, B., Soltanian-Zadeh, H.: Flair signal and texture analysis for lateralizing mesial temporal lobe epilepsy. NeuroImage 49, 1159–1571 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Hajar Hamidian
    • 1
  • Jiaxi Hu
    • 1
  • Zichun Zhong
    • 1
  • Jing Hua
    • 1
    Email author
  1. 1.Wayne State UniversityDetroitUSA

Personalised recommendations