Accuracy Estimation for Medical Image Registration Using Regression Forests

  • Hessam Sokooti
  • Gorkem Saygili
  • Ben Glocker
  • Boudewijn P. F. Lelieveldt
  • Marius Staring
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9902)


This paper reports a new automatic algorithm to estimate the misregistration in a quantitative manner. A random regression forest is constructed, predicting the local registration error. The forest is built using local and modality independent features related to the registration precision, the transformation model and intensity-based similarity after registration. The forest is trained and tested using manually annotated corresponding points between pairs of chest CT scans. The results show that the mean absolute error of regression is 0.72 ± 0.96 mm and the accuracy of classification in three classes (correct, poor and wrong registration) is 93.4 %, comparing favorably to a competing method. In conclusion, a method was proposed that for the first time shows the feasibility of automatic registration assessment by means of regression, and promising results were obtained.


Image registration Registration accuracy Uncertainty estimation Regression forests 


  1. 1.
    Risholm, P., Janoos, F., Norton, I., Golby, A.J., Wells, W.M.: Bayesian characterization of uncertainty in intra-subject non-rigid registration. Med. Image Anal. 17(5), 538–555 (2013)CrossRefGoogle Scholar
  2. 2.
    Datteri, R.D., Dawant, B.M.: Automatic detection of the magnitude and spatial location of error in non-rigid registration. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 21–30. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31340-0_3 CrossRefGoogle Scholar
  3. 3.
    Kybic, J.: Bootstrap resampling for image registration uncertainty estimation without ground truth. IEEE Trans. Image Process. 19, 64–73 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hub, M., Kessler, M.L., Karger, C.P.: A stochastic approach to estimate the uncertaintyinvolved in B-spline image registration. IEEE Trans. Med. Imaging 28(11), 1708–1716 (2009)CrossRefGoogle Scholar
  5. 5.
    Hub, M., Karger, C.: Estimation of the uncertainty of elastic image registration with the Demons algorithm. Phys. Med. Biol. 58(9), 3023 (2013)CrossRefGoogle Scholar
  6. 6.
    Muenzing, S.E., van Ginneken, B., Murphy, K., Pluim, J.P.: Supervised quality assessment of medical image registration: application to intra-patient CT lung registration. Med. Image Anal. 16(8), 1521–1531 (2012)CrossRefGoogle Scholar
  7. 7.
    Lotfi, T., Tang, L., Andrews, S., Hamarneh, G.: Improving probabilistic image registration via reinforcement learning and uncertainty evaluation. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds.) MLMI 2013. LNCS, vol. 8184, pp. 187–194. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-02267-3_24 CrossRefGoogle Scholar
  8. 8.
    Heinrich, M.P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F.V., Brady, M., Schnabel, J.A.: Mind: modality independent neighbourhood descriptor for multi-modal deformable registration. Med. Image Anal. 16(7), 1423–1435 (2012)CrossRefGoogle Scholar
  9. 9.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Stolk, J., Putter, H., Bakker, E.M., Shaker, S.B., Parr, D.G., Piitulainen, E., Russi, E.W., Grebski, E., Dirksen, A., Stockley, R.A., Reiber, J.H.C., Stoel, B.C.: Progression parameters for emphysema: a clinical investigation. Respir. Med. 101(9), 1924–1930 (2007)CrossRefGoogle Scholar
  11. 11.
    Murphy, K., van Ginneken, B., Klein, S., Staring, M., de Hoop, B.J., Viergever, M.A., Pluim, J.P.: Semi-automatic construction of reference standards for evaluation of image registration. Med. Image Anal. 15(1), 71–84 (2011)CrossRefGoogle Scholar
  12. 12.
    Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Hessam Sokooti
    • 1
  • Gorkem Saygili
    • 1
  • Ben Glocker
    • 2
  • Boudewijn P. F. Lelieveldt
    • 1
    • 3
  • Marius Staring
    • 1
    • 3
  1. 1.Leiden University Medical CenterLeidenThe Netherlands
  2. 2.Imperial CollegeLondonUK
  3. 3.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations