Advertisement

Model-Based Regularisation for Respiratory Motion Estimation with Sparse Features in Image-Guided Interventions

  • Matthias WilmsEmail author
  • In Young Ha
  • Heinz Handels
  • Mattias Paul Heinrich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9902)

Abstract

Intra-interventional respiratory motion estimation has become vital for image-guided interventions, especially radiation therapy. While real-time tracking of highly discriminative landmarks like tumours and markers is possible with classic approaches (e.g. template matching), their robustness decreases when used with non-ionising imaging (4D MRI or US). Furthermore, they ignore the motion of neighbouring structures. We address these challenges by dividing the computation of dense deformable registration in two phases: First, a low-parametric full domain patient-specific motion model is learnt. Second, a sparse subset of feature locations is used to track motion locally, while the global motion patterns are constrained by the learnt model. In contrast to previous work, we optimise both objectives (local similarity and globally smooth motion) jointly using a coupled convex energy minimisation. This improves the tracking robustness and leads to a more accurate global motion estimation. The algorithm is computationally efficient and significantly outperforms classic template matching-based dense field estimation in 12 of 14 challenging 4D MRI and 4D ultrasound sequences.

Keywords

Displacement Field Motion Estimation High Intensity Focus Ultrasound Block Match Deformable Image Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is partially funded by the German Research Foundation DFG (HE 7364/1)

References

  1. 1.
    Lagendijk, J.J.W., Raaymakers, B.W., den Berg, C.A.T.V., Moerland, M.A., Philippens, M.E., van Vulpen, M.: MR guidance in radiotherapy. Phys. Med. Biol. 59(21), R349–R369 (2014)CrossRefGoogle Scholar
  2. 2.
    de Senneville, B.D., Ries, M., Bartels, L.W., Moonen, C.T.W.: MRI-guided high-intensity focused ultrasound sonication of liver and kidney. In: Kahn, T., Busse, H. (eds.) Interventional Magnetic Resonance Imaging. Medical Radiology, pp. 349–366. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    Fontanarosa, D., van der Meer, S., Bamber, J., Harris, E., OShea, T., Verhaegen, F.: Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management. Phys. Med. Biol. 60(3), R77–R114 (2015)CrossRefGoogle Scholar
  4. 4.
    Luca, V.D., Benz, T., Kondo, S., et al.: The 2014 liver ultrasound tracking benchmark. Phys. Med. Biol. 60(14), 5571–5599 (2015)CrossRefGoogle Scholar
  5. 5.
    Cervino, L.I., Du, J., Jiang, S.B.: MRI-guided tumor tracking in lung cancer radiotherapy. Phys. Med. Biol. 56(13), 3773–3785 (2011)CrossRefGoogle Scholar
  6. 6.
    Brix, L., Ringgaard, S., Sorensen, T.S., Poulsen, P.R.: Three-dimensional liver motion tracking using real-time two-dimensional MRI. Med. Phys. 41(4), 042302 (2014)CrossRefGoogle Scholar
  7. 7.
    Preiswerk, F., Luca, V.D., Arnold, P., Celicanin, Z., Petrusca, L., Tanner, C., Bieri, O., Salomir, R., Cattin, P.C.: Model-guided respiratory organ motion prediction of the liver from 2D ultrasound. Med. Image Anal. 18(5), 740–751 (2014)CrossRefGoogle Scholar
  8. 8.
    de Senneville, B.D., Hamidi, A.E., Moonen, C.: A direct PCA-based approach for real-time description of physiological organ deformations. IEEE Trans. Med. Imag. 34(4), 974–982 (2015)CrossRefGoogle Scholar
  9. 9.
    McClelland, J., Hawkes, D., Schaeffter, T., King, A.: Respiratory motion models: A review. Med. Image Anal. 17(1), 19–42 (2013)CrossRefGoogle Scholar
  10. 10.
    Klinder, T., Lorenz, C.: Respiratory motion compensation for image-guided bronchoscopy using a general motion model. In: ISBI 2012, pp. 960–963 (2012)Google Scholar
  11. 11.
    Boye, D., Samei, G., Schmidt, J., Szkely, G., Tanner, C.: Population based modeling of respiratory lung motion and prediction from partial information. In: SPIE Medical Imaging 2013, vol. 8669. p. 86690U–86690U-7 (2013)Google Scholar
  12. 12.
    Wulff, J., Black, M.J.: Efficient sparse-to-dense optical flow estimation using a learned basis and layers. In: CVPR 2015, pp. 120–130 (2015)Google Scholar
  13. 13.
    Heinrich, M.P., Papież, B.W., Schnabel, J.A., Handels, H.: Non-parametric discrete registration with convex optimisation. In: Ourselin, S., Modat, M. (eds.) WBIR 2014. LNCS, vol. 8545, pp. 51–61. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-08554-8_6 Google Scholar
  14. 14.
    Peressutti, D., Penney, G.P., Housden, R.J., Kolbitsch, C., Gomez, A., Rijkhorst, E.J., Barratt, D.C., Rhode, K.S., King, A.P.: A novel bayesian respiratory motion model to estimate and resolve uncertainty in image-guided cardiac interventions. Med. Image Anal. 17(4), 488–502 (2013)CrossRefGoogle Scholar
  15. 15.
    Heinrich, M.P., Handels, H., Simpson, I.J.A.: Estimating large lung motion in COPD patients by symmetric regularised correspondence fields. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 338–345. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24571-3_41 CrossRefGoogle Scholar
  16. 16.
    Rohr, K.: On 3D differential operators for detecting point landmarks. Image Vis. Comput. 15(3), 219–233 (1997)CrossRefGoogle Scholar
  17. 17.
    Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imag. 32(7), 1239–1248 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Matthias Wilms
    • 1
    Email author
  • In Young Ha
    • 1
  • Heinz Handels
    • 1
  • Mattias Paul Heinrich
    • 1
  1. 1.Institute of Medical InformaticsUniversity of LübeckLübeckGermany

Personalised recommendations