Advertisement

Joint Segmentation and CT Synthesis for MRI-only Radiotherapy Treatment Planning

  • Ninon Burgos
  • Filipa Guerreiro
  • Jamie McClelland
  • Simeon Nill
  • David Dearnaley
  • Nandita deSouza
  • Uwe Oelfke
  • Antje-Christin Knopf
  • Sébastien Ourselin
  • M. Jorge Cardoso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9901)

Abstract

Accurate knowledge of organ location and tissue attenuation properties are the two essential components to perform radiotherapy treatment planning (RTP). Computed tomography (CT) has been the modality of choice for RTP as it easily provides electron density information. However, its low soft tissue contrast limits the accuracy of organ delineation. On the contrary, magnetic resonance (MR) provides images with excellent soft tissue contrast but its use for RTP is limited by the fact that it does not readily provide tissue attenuation information.

In this work we propose a multi-atlas information propagation scheme that jointly segments the organs at risk and generates pseudo CT data from MR images. We demonstrate that the proposed framework is able to automatically generate accurate pseudo CT images and segmentations in the pelvic region, bypassing the need for CT scan for accurate RTP.

Keywords

Planning Target Volume Segmented Image Radiotherapy Treatment Planning Compute Tomography Intensity Excellent Soft Tissue Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Funding was received from the CMIC-EPSRC platform grant, the EPSRC (EP/H046410/1, EP/K005278) and the NIHR BRC UCLH/UCL High Impact Initiative-BW.mn.BRC10269. Research at ICR is supported by CRUK (C33589/A19727), NHS funding to the NIHR BRC at ICR/RMH, and CRUK and EPSRC support to the Cancer Imaging Centre at ICR/RMH in association with MRC and Department of Health (C1060/A10334, C1060/A16464).

References

  1. 1.
    Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., Cuadra, M.B.: A review of atlas-based segmentation for magnetic resonance brain images. Comput. Methods Programs Biomed. 104(3), e158–e177 (2011)CrossRefGoogle Scholar
  2. 2.
    Klein, S., van der Heide, U.A., Lips, I.M., van Vulpen, M., Staring, M., Pluim, J.P.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med. Phys. 35(4), 1407–1417 (2008)CrossRefGoogle Scholar
  3. 3.
    Burgos, N., Cardoso, M.J., Thielemans, K., Modat, M., Pedemonte, S., Dickson, J., Barnes, A., Ahmed, R., Mahoney, C.J., Schott, J.M., Duncan, J.S., Atkinson, D., Arridge, S.R., Hutton, B.F., Ourselin, S.: Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. Med. Imaging IEEE Trans. 33(12), 2332–2341 (2014)CrossRefGoogle Scholar
  4. 4.
    Gudur, M.S.R., Hara, W., Le, Q.T., Wang, L., Xing, L., Li, R.: A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning. Phys. Med. Biol. 59(21), 6595 (2014)CrossRefGoogle Scholar
  5. 5.
    Uh, J., Merchant, T.E., Li, Y., Li, X., Hua, C.: MRI-based treatment planning with pseudo CT generated through atlas registration. Med. Phys. 41(5), 51711 (2014)CrossRefGoogle Scholar
  6. 6.
    Sjölund, J., Forsberg, D., Andersson, M., Knutsson, H.: Generating patient specific pseudo-CT of the head from MR using atlas-based regression. Phys. Med. Biol. 60(2), 825 (2015)CrossRefGoogle Scholar
  7. 7.
    Burgos, N., Cardoso, M.J., Guerreiro, F., Veiga, C., Modat, M., McClelland, J., Knopf, A., Punwani, S., Atkinson, D., Arridge, S.R., Hutton, B.F., Ourselin, S.: Robust CT synthesis for radiotherapy planning: application to the head and neck region. Med. Image Comput. Comput. Assist. Interv. MICCAI 2015, 476–484 (2015)Google Scholar
  8. 8.
    Dowling, J.A., Sun, J., Pichler, P., Rivest-Hénault, D., Ghose, S., Richardson, H., Wratten, C., Martin, J., Arm, J., Best, L., Chandra, S.S., Fripp, J., Menk, F.W., Greer, P.B.: Automatic substitute computed tomography generation and contouring for magnetic resonance imaging (MRI)-alone external beam radiation therapy from standard mri sequences. Int. J. Radiat. Oncol. Biol. Phys. 93(5), 1144–1153 (2015)CrossRefGoogle Scholar
  9. 9.
    Bai, W., Shi, W., O’Regan, D.P., Tong, T., Wang, H., Jamil-Copley, S., Peters, N.S., Rueckert, D.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: Application to cardiac MR images. Med. Imaging IEEE Trans. 32(7), 1302–1315 (2013)CrossRefGoogle Scholar
  10. 10.
    Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)CrossRefGoogle Scholar
  11. 11.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. Image Process. IEEE Trans. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  12. 12.
    Wong, W.K., Leung, L.H., Kwong, D.L.: Evaluation and optimization of the parameters used in multiple-atlas-based segmentation of prostate cancers in radiation therapy. Brit. J. Radiol. 89(1057), 20140732 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ninon Burgos
    • 1
  • Filipa Guerreiro
    • 2
  • Jamie McClelland
    • 3
  • Simeon Nill
    • 2
  • David Dearnaley
    • 4
  • Nandita deSouza
    • 5
  • Uwe Oelfke
    • 2
  • Antje-Christin Knopf
    • 6
  • Sébastien Ourselin
    • 1
    • 7
  • M. Jorge Cardoso
    • 1
    • 7
  1. 1.Translational Imaging Group, CMICUniversity College LondonLondonUK
  2. 2.Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation Trust (ICR/RMH)LondonUK
  3. 3.Centre for Medical Image ComputingUniversity College LondonLondonUK
  4. 4.Academic Urology Unit, ICR/RMHSuttonUK
  5. 5.CRUK Centre for Cancer Imaging, ICR/RMHSuttonUK
  6. 6.Department of Radiation OncologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
  7. 7.Dementia Research Centre, Institute of Neurology, UCLLondonUK

Personalised recommendations