Automated Age Estimation from Hand MRI Volumes Using Deep Learning

  • Darko ŠternEmail author
  • Christian Payer
  • Vincent Lepetit
  • Martin Urschler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9901)


Biological age (BA) estimation from radiologic data is an important topic in clinical medicine, e.g. in determining endocrinological diseases or planning paediatric orthopaedic surgeries, while in legal medicine it is employed to approximate chronological age. In this work, we propose the use of deep convolutional neural networks (DCNN) for automatic BA estimation from hand MRI volumes, inspired by the way radiologists visually perform age estimation using established staging schemes that follow physical maturation. In our results we outperform the state of the art automatic BA estimation method, achieving a mean error between estimated and ground truth BA of \(0.36\,\pm \,0.30\) years, which is in line with radiologists doing visual BA estimation.


Epiphyseal Plate Stochastic Gradient Descent Intensity Image Hand Bone Deep Convolutional Neural Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ebner, T., Stern, D., Donner, R., Bischof, H., Urschler, M.: Towards automatic bone age estimation from MRI: localization of 3D anatomical landmarks. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 421–428. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10470-6_53 Google Scholar
  2. 2.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi: 10.1007/BFb0056195 CrossRefGoogle Scholar
  3. 3.
    Greulich, W.W., Pyle, S.I.: Radiographic Atlas of Skeletal Development of the Hand and Wrist, 2nd edn. Stanford University Press, Stanford (1959)Google Scholar
  4. 4.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia (MM 2014), pp. 675–678 (2014)Google Scholar
  5. 5.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)Google Scholar
  6. 6.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient based learning applied to document recognition. Proc. IEEE 86(11), 2278–2323 (1998)CrossRefGoogle Scholar
  7. 7.
    Lee, S.C., Shim, J.S., Seo, S.W., Lim, K.S., Ko, K.R.: The accuracy of current methods in determining the timing of epiphysiodesis. Bone Jt. J. 95–B(7), 993–1000 (2013)CrossRefGoogle Scholar
  8. 8.
    Lindner, C., Bromiley, P.A., Ionita, M.C., Cootes, T.F.: Robust and accurate shape model matching using random forest regression-voting. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1862–1874 (2015)CrossRefGoogle Scholar
  9. 9.
    Ritz-Timme, S., Cattaneo, C., Collins, M.J., Waite, E.R., Schuetz, H.W., Kaatsch, H.J., Borrman, H.I.: Age estimation: the state of the art in relation to the specific demands of forensic practise. Int. J. Legal Med. 113(3), 129–136 (2000)CrossRefGoogle Scholar
  10. 10.
    Tanner, J.M., Whitehouse, R.H., Cameron, N., Marshall, W.A., Healy, M.J.R., Goldstein, H.: Assessment of Skeletal Maturity and Predicion of Adult Height (TW2 Method), 2nd edn. Academic Press, Oxford (1983)Google Scholar
  11. 11.
    Thodberg, H.H., Kreiborg, S., Juul, A., Pedersen, K.D.: The BoneXpert method for automated determination of skeletal maturity. IEEE Trans. Med. Imaging 28(1), 52–66 (2009)CrossRefGoogle Scholar
  12. 12.
    Stern, D., Ebner, T., Bischof, H., Grassegger, S., Ehammer, T., Urschler, M.: Fully automatic bone age estimation from left hand MR images. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 220–227. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10470-6_28 Google Scholar
  13. 13.
    Štern, D., Urschler, M.: From individual hand bone age estimates to fully automated age estimation via learning-based information fusion. In: ISBI (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Darko Štern
    • 1
    Email author
  • Christian Payer
    • 2
  • Vincent Lepetit
    • 2
  • Martin Urschler
    • 1
    • 2
    • 3
  1. 1.Ludwig Boltzmann Institute for Clinical Forensic ImagingGrazAustria
  2. 2.Institute for Computer Graphics and VisionGraz University of TechnologyGrazAustria
  3. 3.BioTechMed-GrazGrazAustria

Personalised recommendations