Advertisement

Deep Retinal Image Understanding

  • Kevis-Kokitsi ManinisEmail author
  • Jordi Pont-Tuset
  • Pablo Arbeláez
  • Luc Van Gool
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9901)

Abstract

This paper presents Deep Retinal Image Understanding (DRIU), a unified framework of retinal image analysis that provides both retinal vessel and optic disc segmentation. We make use of deep Convolutional Neural Networks (CNNs), which have proven revolutionary in other fields of computer vision such as object detection and image classification, and we bring their power to the study of eye fundus images. DRIU uses a base network architecture on which two set of specialized layers are trained to solve both the retinal vessel and optic disc segmentation. We present experimental validation, both qualitative and quantitative, in four public datasets for these tasks. In all of them, DRIU presents super-human performance, that is, it shows results more consistent with a gold standard than a second human annotator used as control.

Keywords

Retinal vessel segmentation Optic disc segmentation Deep learning Convolutional neural networks Retinal image understanding 

Notes

Acknowledgments

Research funded by the EU Framework Programme for Research and Innovation - Horizon 2020 - Grant Agreement No. 645331 - EurEyeCase. We thank NVIDIA Corporation for donating the GPUs used in this project.

References

  1. 1.
    Becker, C., Rigamonti, R., Lepetit, V., Fua, P.: Supervised feature learning for curvilinear structure segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 526–533. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40811-3_66 CrossRefGoogle Scholar
  2. 2.
    Carmona, E.J., Rincón, M., García-Feijoó, J., Martínez-de-la Casa, J.M.: Identification of the optic nerve head with genetic algorithms. AIIM 43(3), 243–259 (2008)Google Scholar
  3. 3.
    Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D.W.K., Tan, N.M., Tao, D., Cheng, C.Y., Aung, T., Wong, T.Y.: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE T-MI 32(6), 1019–1032 (2013)Google Scholar
  4. 4.
    Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV (2013)Google Scholar
  5. 5.
    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images-a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)CrossRefGoogle Scholar
  6. 6.
    Fumero, F., Alayón, S., Sanchez, J., Sigut, J., Gonzalez-Hernandez, M.: Rim-one: an open retinal image database for optic nerve evaluation. In: CBMS, pp. 1–6 (2011)Google Scholar
  7. 7.
    Ganin, Y., Lempitsky, V.: N\(^{4}\)-fields: neural network nearest neighbor fields for image transforms. In: ACCV (2014)Google Scholar
  8. 8.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE T-PAMI 38(1), 142–158 (2016)CrossRefGoogle Scholar
  9. 9.
    Gu, L., Cheng, L.: Learning to boost filamentary structure segmentation. In: ICCV (2015)Google Scholar
  10. 10.
    Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: CVPR (2015)Google Scholar
  11. 11.
    Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE T-MI 19(3), 203–210 (2000)Google Scholar
  12. 12.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)Google Scholar
  13. 13.
    Morales, S., Naranjo, V., Angulo, J., Alcañiz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE T-MI 32(4), 786–796 (2013)Google Scholar
  14. 14.
    Nguyen, U.T., Bhuiyan, A., Park, L.A., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. PR 46(3), 703–715 (2013)Google Scholar
  15. 15.
    Orlando, J.I., Blaschko, M.: Learning fully-connected CRFs for blood vessel segmentation in retinal images. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 634–641. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10404-1_79 Google Scholar
  16. 16.
    Pont-Tuset, J., Marques, F.: Supervised evaluation of image segmentation and object proposal techniques. IEEE T-PAMI 38(7), 1465–1478 (2015)CrossRefGoogle Scholar
  17. 17.
    Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE T-MI 26(10), 1357–1365 (2007)Google Scholar
  18. 18.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)Google Scholar
  19. 19.
    Sironi, A., Lepetit, V., Fua, P.: Projection onto the manifold of elongated structures for accurate extraction. In: ICCV (2015)Google Scholar
  20. 20.
    Soares, J.V., Leandro, J.J., Cesar, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE T-MI 25(9), 1214–1222 (2006)Google Scholar
  21. 21.
    Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M., Van Ginneken, B., et al.: Ridge-based vessel segmentation in color images of the retina. IEEE T-MI 23(4), 501–509 (2004)Google Scholar
  22. 22.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)Google Scholar
  23. 23.
    Walter, T., Klein, J.-C.: Segmentation of color fundus images of the human retina: detection of the optic disc and the vascular tree using morphological techniques. In: Crespo, J., Maojo, V., Martin, F. (eds.) ISMDA 2001. LNCS, vol. 2199, pp. 282–287. Springer, Heidelberg (2001). doi: 10.1007/3-540-45497-7_43 CrossRefGoogle Scholar
  24. 24.
    Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV (2015)Google Scholar
  25. 25.
    Youssif, A., Ghalwash, A.Z., Ghoneim, A.: Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE T-MI 27(1), 11–18 (2008)Google Scholar
  26. 26.
    Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of gaussian. Comput. Biol. Med. 40(4), 438–445 (2010)CrossRefGoogle Scholar
  27. 27.
    Zilly, J.G., Buhmann, J.M., Mahapatra, D.: Boosting convolutional filters with entropy sampling for optic cup and disc image segmentation from fundus images. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds.) MLMI 2015. LNCS, vol. 9352, pp. 136–143. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24888-2_17 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Kevis-Kokitsi Maninis
    • 1
    Email author
  • Jordi Pont-Tuset
    • 1
  • Pablo Arbeláez
    • 2
  • Luc Van Gool
    • 1
    • 3
  1. 1.ETH ZürichZürichSwitzerland
  2. 2.Universidad de los AndesBogotáColombia
  3. 3.KU LeuvenLeuvenBelgium

Personalised recommendations