Multidimensional Texture Analysis for Improved Prediction of Ultrasound Liver Tumor Response to Chemotherapy Treatment

  • Omar S. Al-Kadi
  • Dimitri Van De Ville
  • Adrien Depeursinge
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9900)


The number density of scatterers in tumor tissue contribute to a heterogeneous ultrasound speckle pattern that can be difficult to discern by visual observation. Such tumor stochastic behavior becomes even more challenging if the tumor texture heterogeneity itself is investigated for changes related to response to chemotherapy treatment. Here we define a new tumor texture heterogeneity model for evaluating response to treatment. The characterization of the speckle patterns is performed via state-of-the-art multi-orientation and multi-scale circular harmonic wavelet (CHW) frames analysis of the envelope of the radio-frequency signal. The lacunarity measure – corresponding to scatterer number density – is then derived from fractal dimension texture maps within the CHW decomposition, leading to a localized quantitative assessment of tumor texture heterogeneity. Results indicate that evaluating tumor heterogeneity in a multidimensional texture analysis approach could potentially impact on designing an early and effective chemotherapy treatment.


Fractal Dimension Speckle Pattern Fractal Texture Nakagami Distribution Localize Fractal Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Dr. Daniel Y.F. Chung for providing the ultrasound dataset. This work was partially supported by the Swiss National Science Foundation (grant PZ00P2_154891) and the Arab Fund (grant 2015-02-00627).


  1. 1.
    Bae, Y.H., Mrsny, R., Park, K.: Cancer Targeted Drug Delivery: An Elusive Dream, pp. 689–707. Springer, New York (2013)Google Scholar
  2. 2.
    Sadeghi-Naini, A., Papanicolau, N., Falou, O., Zubovits, J., Dent, R., Verma, S., Trudeau, M., Boileau, J.F., Spayne, J., Iradji, S., Sofroni, E., Lee, J., Lemon-Wong, S., Yaffe, M., Kolios, M.C., Czarnota, G.J.: Quantitative ultrasound evaluation of tumor cell death response in locally advanced breast cancer patients receiving chemotherapy. Clin. Cancer Res. 19(8), 2163–2174 (2013)CrossRefGoogle Scholar
  3. 3.
    Tadayyon, H., Sadeghi-Naini, A., Wirtzfeld, L., Wright, F.C., Czarnota, G.: Quantitative ultrasound characterization of locally advanced breast cancer by estimation of its scatterer properties. Med. Phys. 41, 012903 (2014)CrossRefGoogle Scholar
  4. 4.
    Gangeh, M.J., Sadeghi-Naini, A., Diu, M., Kamel, M.S., Czarnota, G.J.: Categorizing extent of tumour cell death response to cancer therapy using quantitative ultrasound spectroscopy and maximum mean discrepancy. IEEE Trans. Med. Imaging 33(6), 268–272 (2014)CrossRefGoogle Scholar
  5. 5.
    Wachinger, C., Klein, T., Navab, N.: The 2D analytic signal for envelope detection and feature extraction on ultrasound images. Med. Image Anal. 16(6), 1073–1084 (2012)CrossRefGoogle Scholar
  6. 6.
    Al-Kadi, O.S., Chung, D.Y., Carlisle, R.C., Coussios, C.C., Noble, J.A.: Quantification of ultrasonic texture intra-heterogeneity via volumetric stochastic modeling for tissue characterization. Med. Image Anal. 21(1), 59–71 (2015)CrossRefGoogle Scholar
  7. 7.
    Al-Kadi, O.S., Watson, D.: Texture analysis of aggressive and non-aggressive lung tumor CE CT images. IEEE Trans. Bio-med. Eng. 55(7), 1822–1830 (2008)CrossRefGoogle Scholar
  8. 8.
    Shankar, P.M.: A general statistical model for ultrasonic backscattering from tissues. IEEE T Ultrason. Ferroelectr. Freq. Control 47(3), 727–736 (2000)CrossRefGoogle Scholar
  9. 9.
    Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40, 49–70 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ojala, T., Pietikänen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)CrossRefGoogle Scholar
  11. 11.
    Unser, M., Chenouard, N.: A unifying parametric framework for 2D steerable wavelet transforms. SIAM J. Imaging Sci. 6(1), 102–135 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Unser, M., Van De Ville, D.: Wavelet steerability and the higher-order Riesz transform. IEEE Trans. Image Process. 19(3), 636–652 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Depeursinge, A., Püspöki, Z., et al.: Steerable wavelet machines (SWM): learning moving frames for texture classification. IEEE Trans. Image Process. (submitted)Google Scholar
  14. 14.
    Lopes, R., Betrouni, N.: Fractal and multifractal analysis: a review. Med. Image Anal. 13(4), 634–649 (2009)CrossRefGoogle Scholar
  15. 15.
    Plotnick, R.E., Gardner, R.H., Hargrove, W.W., Prestegaard, K., Perlmutter, M.: Lacunarity analysis: a general technique for the analysis of spatial patterns. Phys. Rev. E 53(5), 5461–5468 (1996)CrossRefGoogle Scholar
  16. 16.
    Eisenhauer, E.A., Therasse, P., et al.: New response evaluation criteria in solid tumours: revised RECIST guideline. Eur. J. Cancer 45(2), 228–247 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Omar S. Al-Kadi
    • 1
    • 2
  • Dimitri Van De Ville
    • 2
    • 3
  • Adrien Depeursinge
    • 2
    • 4
  1. 1.King Abdullah II School for Information TechnologyUniversity of JordanAmmanJordan
  2. 2.School of EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  3. 3.Department of Radiology and Medical InformaticsUniversité de GenèveGenevaSwitzerland
  4. 4.University of Applied Sciences Western Switzerland (HES–SO)SierreSwitzerland

Personalised recommendations