4D Reconstruction of Fetal Heart Ultrasound Images in Presence of Fetal Motion

  • Christine Tanner
  • Barbara Flach
  • Céline Eggenberger
  • Oliver Mattausch
  • Michael Bajka
  • Orcun Goksel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9900)


4D ultrasound imaging of the fetal heart relies on reconstructions from B-mode images. In the presence of fetal or mother’s motion, current approaches suffer from artifacts. We propose to use many sweeps and exploit the resulting redundancy to recover from motion by reconstructing a 4D image which is consistent in phase, space and time. We first quantified the performance of 7 formulations on simulated data. Reconstructions of the best and baseline approach were then visually compared for 10 in-vivo sequences. Ratings from 4 observers showed that the proposed consistent reconstruction significantly improved image quality.


Fetal Heart Fetal Heart Rate Mean Square Difference Fetal Motion Temporal Consistency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the Swiss CTI and NSF for funding.


  1. 1.
    Carvalho, J.S., Allan, L.D., Chaoui, R., Copel, J.A., DeVore, G.R., Hecher, K., et al.: ISUOG practice guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet. Gynecol. 41(3), 348 (2013)CrossRefGoogle Scholar
  2. 2.
    DeVore, G.R., Falkensammer, P., Sklansky, M.S., Platt, L.D.: Spatio-temporal image correlation (STIC): new technology for evaluation of the fetal heart. Ultrasound Obstet. Gynecol. 22(4), 380 (2003)CrossRefGoogle Scholar
  3. 3.
    Nelson, T.R., Pretorius, D.H., Sklansky, M., Hagen-Ansert, S.: Three-dimensional echocardiographic evaluation of fetal heart anatomy and function: acquisition, analysis, and display. J. Ultrasound Med. 15(1), 1 (1996)CrossRefGoogle Scholar
  4. 4.
    Schoisswohl, A., Falkensammer, P.: Method and apparatus for obtaining a volumetric scan of a periodically moving object. US Patent 6,966,878, 22 November 2005Google Scholar
  5. 5.
    Wachinger, C., Yigitsoy, M., Rijkhorst, E.-J., Navab, N.: Manifold learning for image-based breathing gating in ultrasound and MRI. Med. Image Anal. 16(4), 806 (2012)CrossRefGoogle Scholar
  6. 6.
    Odille, F., Bustin, A., Chen, B., Vuissoz, P., Felblinger, J.: Motion-corrected, super-resolution reconstruction for high-resolution 3D cardiac cine MRI. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 435–442. Springer, Berlin (2015)CrossRefGoogle Scholar
  7. 7.
    Peterfi, I., Kellenyi, L., Szilagyi, A.: Noninvasive recording of true-to-form fetal ECG during the third trimester of pregnancy. Obstet. Gynecol. Int. 2014, Article ID 285636 (2014)Google Scholar
  8. 8.
    Uittenbogaard, L.B., Haak, M.C., Spreeuwenberg, M.D., Van Vugt, J.M.G.: A systematic analysis of the feasibility of four-dimensional ultrasound imaging using spatiotemporal image correlation in routine fetal echocardiography. Ultrasound Obstet. Gynecol. 31(6), 625 (2008)CrossRefGoogle Scholar
  9. 9.
    Yagel, S., Benachi, A., Bonnet, D., Dumez, Y., Hochner-Celnikier, D., Cohen, S.M., et al.: Rendering in fetal cardiac scanning: the intracardiac septa and the coronal atrioventricular valve planes. Ultrasound Obstet. Gynecol. 28(3), 266 (2006)CrossRefGoogle Scholar
  10. 10.
    Kainz, B., Alansary, A., Malamateniou, C., Keraudren, K., Rutherford, M., Hajnal, J.V., Rueckert, D.: Flexible reconstruction and correction of unpredictable motion from stacks of 2D images. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 555–562. Springer, Berlin (2015)CrossRefGoogle Scholar
  11. 11.
    Bürger, B., Bettinghausen, S., Radle, M., Hesser, J.: Real-time GPU-based ultrasound simulation using deformable mesh models. IEEE T Med. Imaging 32(3), 609 (2013)CrossRefGoogle Scholar
  12. 12.
    Cohen, B., Dinstein, I.: New maximum likelihood motion estimation schemes for noisy ultrasound images. Pattern Recogn. 35(2), 455 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Seroul, P., Sarrut, D.: VV: a viewer for the evaluation of 4D image registration. In: MICAS Journal (MICCAI Workshop - Systems and Architectures for Computer Assisted Interventions) vol. 40, p. 1 (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Christine Tanner
    • 1
  • Barbara Flach
    • 1
  • Céline Eggenberger
    • 1
  • Oliver Mattausch
    • 1
  • Michael Bajka
    • 2
  • Orcun Goksel
    • 1
  1. 1.Computer Vision LaboratoryETH ZurichZurichSwitzerland
  2. 2.Department of GynaecologyUniversity HospitalZurichSwitzerland

Personalised recommendations